The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SURF(415hit)

181-200hit(415hit)

  • Ground Wave Propagation in an Inhomogeneous Atmosphere over Mixed-Paths

    Toru KAWANO  Keiji GOTO  Toyohiko ISHIHARA  

     
    PAPER-Radiation and Propagation

      Vol:
    E90-C No:2
      Page(s):
    288-294

    In this paper, we have derived the new solution for the medium-frequency and the high-frequency ground wave propagation in a surface duct over mixed-paths. We have shown newly that the solution for the ground wave propagation in a standard atmosphere can be obtained directly from the solution for the surface duct problem by applying the analytic continuation from the negative equivalent radius of curvature of the earth to the positive one. Through the theoretical and experimental studies, it is confirmed that the radio wave propagating over the sea in the land-to-sea mixed-paths is enhanced by the recovery effect. It is clarified that the ground wave is also enhanced in the surface duct in a long range propagation. It is shown that the unexpected attenuation and the anomalous variation with distance are appeared in the propagation in the urban area due to the emergence of the slow-wave type trapped surface wave.

  • Characterization of Surface Wave Propagation in UC-PBG Patch Antenna by Using an Electrooptic Near-Field Mapping System

    Kyoung-Hwan OH  Jong-In SONG  

     
    PAPER

      Vol:
    E90-C No:2
      Page(s):
    422-428

    An electrooptic near-field mapping system based on a gain-switched distributed feedback (DFB) pulsed laser and a CdTe electrooptic crystal was used for characterizing stationary and transient near-field patterns of conventional and uniplanar compact photonic band gap (UC-PBG) patch antennas. Effect of the UC-PBG structure on reduction in surface waves in the UC-PBG patch antenna was experimentally verified by comparing stationary and transient near-field measurement of the conventional and UC-PBG patch antennas.

  • Guiding and Nanofocusing of Two-Dimensional Optical Beam for Nanooptical Integrated Circuits

    Junichi TAKAHARA  Fuminori KUSUNOKI  

     
    INVITED PAPER

      Vol:
    E90-C No:1
      Page(s):
    87-94

    Guiding and nanofocusing of a two-dimensional (2D) optical beam in a negative-dielectric-gap waveguide is studied theoretically. An index-guiding method along the dielectric core embedded in the negative-dielectric-gap is proposed and the confinement properties of the 2D optical beam are studied by the effective-refractive-index method and FDTD simulations. We have shown that the lateral beam width of the 2D optical beam can be shrunk to zero beyond the diffraction limit. A tapered negative-dielectric-gap waveguide using adiabatic propagation achieves nano-focusing and can be applied to nano-optical couplers. This is a gateway from conventional dielectric waveguides to nano-optical integrated circuits.

  • Detection of Label-Free T4-DNA Molecules Using SPR Technique

    Hiroki OKUNO  Ayami NISHIOKA  Maho HOSOGI  Fumikazu OOHIRA  Gen HASHIGUCHI  

     
    PAPER-Plasmonics and Nanophotonics

      Vol:
    E90-C No:1
      Page(s):
    110-115

    In this paper, we propose a new method for detecting label-free T4-DNA molecules quantitatively using a surface plasmon resonance (SPR) technique on a gold thin film. We used a solution that dissolved T4-DNA molecules in pure water, and examined the relationship between DNA concentration change and SPR angle change in the solution. As a result, it was confirmed that the SPR angle change increased with increasing DNA concentration change. Therefore, it was feasible to detect the DNA concentration change using the SPR technique. Furthermore, to examine and detect a single or a few DNA molecule, we tried to fabricate an SPR chip in which SPR area is narrowed so that it has the same effect as focusing the beam. To narrow the SPR area, we decreased the area of gold thin film in this chip, and, to reflect light from only the area of gold thin film, the area without a gold thin film was micromachined to increase its unevenness for the reduction of light reflection. By the above-mentioned method, we examined the possibility of detecting a label-free DNA molecule using the SPR technique.

  • Low-Temperature Au-to-Au Bonding for LiNbO3/Si Structure Achieved in Ambient Air

    Ryo TAKIGAWA  Eiji HIGURASHI  Tadatomo SUGA  Satoshi SHINADA  Tetsuya KAWANISHI  

     
    LETTER-Micro/Nano Fabrication

      Vol:
    E90-C No:1
      Page(s):
    145-146

    A lithium niobate (LiNbO3)/silicon (Si) hybrid structure has been developed by the surface-activated bonding of LiNbO3 chips with gold (Au) thin film to Si substrates with patterned Au film. After organic contaminants on the Au surfaces were removed using argon radio-frequency plasma, Au-to-Au bonding was carried out in ambient air. Strong bonding at significantly low temperatures below 100 without generating cracks has been demonstrated.

  • Numerical Analysis of Waveguide-Based Surface Plasmon Resonance Sensor with Adsorbed Layer Using Two- and Three-Dimensional Beam-Propagation Methods

    Jun SHIBAYAMA  Shota TAKAGI  Tomohide YAMAZAKI  Junji YAMAUCHI  Hisamatsu NAKANO  

     
    PAPER-Plasmonics and Nanophotonics

      Vol:
    E90-C No:1
      Page(s):
    95-101

    A waveguide-based surface plasmon resonance (SPR) sensor with an adsorbed layer is analyzed using the beam-propagation method. For two-dimensional (2-D) models, numerical results show that the change in thickness of the adsorbed layer placed on the metal leads to a significant shift of the maximum absorption wavelength. Through eigenmode analysis, the maximum absorption wavelength is found to be consistent with the cutoff wavelength of the second-order surface plasmon mode. The designed 2-D sensor shows an absorption wavelength shift from 0.595 to 0.603 µm, when the analyte refractive index is increased from 1.330 to 1.334. After a basic investigation using the 2-D models, we next study 3-D models. When the metal with the absorbed layer is wide enough to cover the core region, the 3-D results are similar to the 2-D results. However, as the metal width is reduced, the absorption wavelength shifts toward a shorter wavelength and the sensitivity to the refractive index change degrades gradually. The degradation of the sensitivity is considerable when the metal width is narrower than the core width. As a result, the metal width of the practical SPR sensor should be slightly wider than the core width so as to maintain the sensitivity corresponding to that obtained for the 2-D model.

  • Preparation and Evaluation of Aligned Naphthacene Thin Films Using Surface Plasmon Excitation

    Tohru SHIMAOKA  Hiroaki KOBAYASHI  Kazuki YAMASHITA  Yasuo OHDAIRA  Kazunari SHINBO  Keizo KATO  Futao KANEKO  

     
    LETTER-Evaluation of Organic Materials

      Vol:
    E89-C No:12
      Page(s):
    1758-1759

    Molecular aligned naphthacene thins films were fabricated using vacuum evaporation and the rubbing method. The attenuated total reflection (ATR) and emission light properties from surface plasmon (SP) excitation due to molecular luminescence were investigated for these films. The long axis of the rod-like molecule was estimated to align perpendicular to the rubbing direction. The ATR and emission light properties depended on the molecular orientation.

  • Scattering of a TM Plane Wave from a Periodic Surface with Finite Extent: Perturbation Solution

    Junichi NAKAYAMA  Yujiro OCHI  Yasuhiko TAMURA  

     
    LETTER-Electromagnetic Theory

      Vol:
    E89-C No:9
      Page(s):
    1358-1361

    This paper studies the scattering of a TM plane wave from a perfectly conductive sinusoidal surface with finite extent by the small perturbation method. We obtain the first and second order perturbed solutions explicitly, in terms of which the differential scattering cross section and the total scattering cross section per unit surface are calculated and are illustrated in figures. By comparison with results by a numerical method, it is concluded that the perturbed solution is reasonable even for a critical angle of incidence if the surface is small in roughness and gentle in slope and if the corrugation width is less than certain value. A brief discussion is given on multiple scattering effects.

  • Surface Reconstruction from Stereo Data Using a Three-Dimensional Markov Random Field Model

    Hotaka TAKIZAWA  Shinji YAMAMOTO  

     
    PAPER-Stereo and Multiple View Analysis

      Vol:
    E89-D No:7
      Page(s):
    2028-2035

    In the present paper, we propose a method for reconstructing the surfaces of objects from stereo data. Both the fitness of stereo data to surfaces and interrelation between the surfaces are defined in the framework of a three-dimensional (3-D) Markov Random Field (MRF) model. The surface reconstruction is accomplished by searching for the most likely state of the MRF model. Three experimental results are shown for synthetic and real stereo data.

  • Development and Calibration of a Gonio-Spectral Imaging System for Measuring Surface Reflection

    Akira KIMACHI  Norihiro TANAKA  Shoji TOMINAGA  

     
    PAPER-Photometric Analysis

      Vol:
    E89-D No:7
      Page(s):
    1994-2003

    This paper proposes a gonio-spectral imaging system for measuring light reflection on an object surface by using two robot arms, a multi-band lighting system, and a monochrome digital camera. It allows four degrees of freedom in incident and viewing angles necessary for full parametrization of a reflection model function. Spectral images captured for various incident and viewing angles are warped as if they were all captured from the same viewing direction. The intensity of reflected light is thus recorded in a normalized image form for any incident and viewing directions. The normalized images are used to estimate reflection model parameters at each surface point. To ensure point-wise reflection modeling, a calibration method is also proposed based on a geometrical model of the robot arms and camera. The proposed system can deal with objects with surface texture. Experiments are done on system calibration, reflection model, and spectral estimation. The results using colored objects show the feasibility of the proposed imaging system.

  • Diffraction Amplitudes from Periodic Neumann Surface: Low Grazing Limit of Incidence

    Junichi NAKAYAMA  Kazuhiro HATTORI  Yasuhiko TAMURA  

     
    LETTER-Electromagnetic Theory

      Vol:
    E89-C No:5
      Page(s):
    642-644

    This paper deals with the diffraction of TM plane wave by a perfectly conductive periodic surface. Applying the Rayleigh hypothesis, a linear equation system determining the diffraction amplitudes is derived. The linear equation is formally solved by Cramer's formula. It is then found that, when the angle of incidence becomes a low grazing limit, the amplitude of the specular reflection becomes -1 and any other diffraction amplitudes vanish for any perfectly conductive periodic surfaces with small roughness and gentle slope.

  • A New Approach to Mixed-Path Propagation of Surface Wave

    Bin-hao JIANG  

     
    LETTER-Electromagnetic Theory

      Vol:
    E89-C No:3
      Page(s):
    434-436

    A new approach used to formulate to mixed-path propagation of surface wave is presented based on two main ingredients: the decomposition of electromagnetic fields and the introduction of equivalent electric (magnetic) currents adopted for convenience. The present method can be extended to obtain the corresponding results for the arbitrary incident wave excitation.

  • Propagation Analysis of Circular Surface Waveguides with a Periodically Corrugated Ground Plane

    Chin-Jui LAI  Ching-Her LEE  Chung-I G. HSU  Jean-Fu KIANG  

     
    PAPER-Electromagnetic Theory

      Vol:
    E89-C No:3
      Page(s):
    395-402

    A mode-matching technique in conjunction with the Floquet theorem is proposed to analyze the propagation characteristics of periodic circular surface waveguides. The circular waveguides are coated outside with a multilayered dielectric and have a ground plane with periodic corrugation of arbitrary profile. Three different ground corrugation profiles are examined to demonstrate the influences of the corrugation shape, depth, and width, dielectric thickness, and relative permittivity on bandstop characteristics.

  • Microwave Properties of Sapphire Resonators with a Gap and Their Applicability for Measurements of the Intrinsic Surface Impedance of Thin Superconductor Films

    Sang Young LEE  Jae Hun LEE  Woo Il YANG  John H. CLAASSEN  

     
    PAPER

      Vol:
    E89-C No:2
      Page(s):
    132-139

    A dielectric resonator with a gap between the top plate and the rest has been useful for measuring the penetration depth (λ) of superconductor films, a parameter essential for obtaining the intrinsic microwave surface resistance (Rs) of thin superconductor films. We investigated effects of a gap on the microwave properties of TE0ml-mode sapphire resonators with a gap between the top plate and the rest of the resonator. Regardless of a 10 µm-gap in TE0ml-mode sapphire resonators, variations of the TE0ml-mode resonant frequency on temperature (Δf0) as well as TE0ml-mode unloaded Q remained almost the same due to lack of axial currents inside the resonator and negligible radiation effects. The λ of YBa2Cu3O7-δ (YBCO) films obtained from a fit to the temperature-dependent Δf0 appeared to be 195 nm at 0 K and 19.3 GHz, which was well compared with the corresponding value of 193 nm at 10 kHz measured by the mutual inductance method. The intrinsic Rs of YBCO films on the order of 1 mΩ, and the tan δ of sapphire on the order of 10-8 at 15 K and 40 GHz could be measured simultaneously using sapphire resonators with a 10 µm-gap.

  • Microwave Power Dependence Measurement of Surface Resistance of Superconducting Films Using a Dielectric Resonator Method with Circle Fit and Two-Mode Techniques

    Haruhiko OBARA  Shin KOSAKA  

     
    PAPER

      Vol:
    E89-C No:2
      Page(s):
    125-131

    A system was developed to measure the microwave power dependence of the surface resistance superconductor films. The system uses a dielectric resonator method combined with a circle fit technique and a two-mode technique to measure the microwave surface resistance of superconductor films. For validation, this system was used to measure such surface resistance for superconductor films with different surface morphologies. Significant difference in microwave power dependence of surface resistance was observed. This measurement system proved suitable for evaluating superconducting films for passive microwave devices, including high power devices such as transmitting filters.

  • Fabrication of Double-Sided YBa2Cu3O7 Films on CeO2-Buffered Sapphire Substrates by MOD Process

    Mitsugu SOHMA  Kunio KAMIYA  Kenichi TSUKADA  Iwao YAMAGUCHI  Wakichi KONDO  Susumu MIZUTA  Takaaki MANABE  Toshiya KUMAGAI  

     
    PAPER

      Vol:
    E89-C No:2
      Page(s):
    182-185

    Double-sided YBa2Cu3O7 (YBCO) films were successfully prepared on 50-mm-diameter CeO2-buffered sapphire substrates by metalorganic deposition (MOD) process using an acetylacetonate coating solution. Mapping analysis of superconducting current densities (Jc) at 77.3 K revealed that Jc values of the double-sided films indicated in excess of 2 MA/cm2 in the center parts with a small decrease of Jc at the outer side of the specimens. The Jc values of one side (A) are higher than those of the other side (B). Microwave surface resistance (Rs) of sides A and B of the film exhibited 0.57 and 0.60 mΩ, respectively, at 70 K (12 GHz). The difference in the Rs values should be attributed to the slight difference in the Jc values, which arose from the surface morphology of the CeO2 buffer layer and heat treatment conditions during the firing process in MOD.

  • Calibration Free Virtual Display System Using Video Projector onto Real Object Surface

    Shinichiro HIROOKA  Hideo SAITO  

     
    PAPER

      Vol:
    E89-D No:1
      Page(s):
    88-97

    In this paper, we propose a novel virtual display system for a real object surface by using a video projector, so that the viewer can feel as if digital images are printed on the real surface with arbitrary shape. This system consists of an uncalibrated camera and video projector connected to a same PC and creates a virtual object by rendering 2D contents preserved beforehand onto a white object in a real world via a projector. For geometry registration between the rendered image and the object surface correctly, we regard the object surface as a set of a number of small rectangular regions and perform geometry registration by calculating homographies between the projector image plane and the each divided regions. By using such a homography-based method, we can avoid calibration of a camera and a projector that is necessary in a conventional method. In this system, we perform following two processes. First of all, we acquire the status of the object surface from images which capture the scene that color-coded checker patterns are projected on it and generate image rendered on it without distortion by calculating homographies. After once the projection image is generated, the rendered image can be updated if the object surface moves, or refined when it is stationary by observing the object surface. By this second process, the system always offers more accurate display. In implementation, we demonstrate our system in various conditions. This system enables it to project them as if it is printed on a real paper surface of a book. By using this system, we expect the realization of a virtual museum or other industrial application.

  • Surface Wave Distribution over Electromagnetic Bandgap (EBG) and EBG Reflective Shield for Patch Antenna

    Kazuoki MATSUGATANI  Makoto TANAKA  Shinji FUKUI  Won Ho KIM  Moonil KIM  

     
    PAPER-Electromagnetic Theory

      Vol:
    E88-C No:12
      Page(s):
    2341-2349

    Surface wave distribution over electromagnetic bandgap (EBG) plate is measured and suppression of surface wave propagation over the EBG is investigated. We used a micro current probe that detects H-field strength of the propagating transverse magnetic (TM) microwave up to 6 GHz. By scanning with the probe over the EBG, we visualized surface wave distribution at various frequencies. This visualized map shows that the EBG plate suppresses the surface wave propagation within the bandgap frequency. We utilized this effect for the antenna reflective shield. By combining the EBG with a microstrip patch antenna, this EBG works as a reflective shield and the front-to-backward radiation ratio of antenna is increased. In this experiment, we fabricated three types of shield board; mushroom type of EBG that has hexagonal textured patches connected with via-holes, textured surface without via-holes, and plane metal. By comparing the surface wave distributions and beam patterns of antenna with various shields, we found that the visualized map of TM surface wave gives us direct and intuitive information and helpful tips in designing the EBG reflective shield for patch antenna.

  • Novel Dual-Resonant and Dual-Polarized Frequency Selective Surface Using Eight-Legged Element and Its Experimental Verification

    Masataka OHIRA  Hiroyuki DEGUCHI  Mikio TSUJI  Hiroshi SHIGESAWA  

     
    PAPER-EM Analysis

      Vol:
    E88-C No:12
      Page(s):
    2229-2235

    In this paper, an eight-legged resonant element is proposed for a multiband and dual-polarized frequency selective surface (FSS). The FSS element has two resonant frequencies for constructing two reflection bands, of which the separation can be easily controlled by adjusting the shape of the element. The flexibility is demonstrated by the simulated results of transmission responses for various geometrical parameters. And it is shown that introducing resonant-grid and closely-packing techniques can improve the reflection bandwidth. Finally, the good agreement between the measured and the calculated results proves that the eight-legged element is useful for the design of a multiband FSS.

  • Computational Methods for Surface Relief Gratings Using Electric and Magnetic Flux Expansions

    Minoru KOMATSU  Hideaki WAKABAYASHI  Jiro YAMAKITA  

     
    PAPER-EM Analysis

      Vol:
    E88-C No:12
      Page(s):
    2192-2198

    The relative permittivity and permeability are discontinuous at the grating profile, and the electric and magnetic flux densities are continuous. As for the method of analysis for scattering waves by surface relief gratings placed in conical mounting, the spatial harmonic expansion approach of the flux densities are formulated in detail and the validity of the approach is shown numerically. The present method is effective for uniform regions such as air and substrate in addition to grating layer. The matrix formulations are introduced by using numerical calculations of the matrix eigenvalue problem in the grating region and analytical solutions separated for TE and TM waves in the uniform region are described. Some numerical examples for linearly and circularly polarized incidence show the usefulness of the flux densities expansion approach.

181-200hit(415hit)