The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SURF(415hit)

201-220hit(415hit)

  • Surface Wave Distribution over Electromagnetic Bandgap (EBG) and EBG Reflective Shield for Patch Antenna

    Kazuoki MATSUGATANI  Makoto TANAKA  Shinji FUKUI  Won Ho KIM  Moonil KIM  

     
    PAPER-Electromagnetic Theory

      Vol:
    E88-C No:12
      Page(s):
    2341-2349

    Surface wave distribution over electromagnetic bandgap (EBG) plate is measured and suppression of surface wave propagation over the EBG is investigated. We used a micro current probe that detects H-field strength of the propagating transverse magnetic (TM) microwave up to 6 GHz. By scanning with the probe over the EBG, we visualized surface wave distribution at various frequencies. This visualized map shows that the EBG plate suppresses the surface wave propagation within the bandgap frequency. We utilized this effect for the antenna reflective shield. By combining the EBG with a microstrip patch antenna, this EBG works as a reflective shield and the front-to-backward radiation ratio of antenna is increased. In this experiment, we fabricated three types of shield board; mushroom type of EBG that has hexagonal textured patches connected with via-holes, textured surface without via-holes, and plane metal. By comparing the surface wave distributions and beam patterns of antenna with various shields, we found that the visualized map of TM surface wave gives us direct and intuitive information and helpful tips in designing the EBG reflective shield for patch antenna.

  • Theory of Transmission and Dissipation of Radiation near a Metallic Slab Based on Angular Spectrum Representation

    Tetsuya INOUE  Yasuo OHDAIRA  Hirokazu HORI  

     
    PAPER

      Vol:
    E88-C No:9
      Page(s):
    1836-1844

    The radiation properties of oscillating electric dipoles are studied theoretically for three and four layered systems including a single metallic slab based on angular spectrum representation of vector spherical waves. One of the remarkable results obtained is the transmission energy spectrum showing strong dependence on the thickness of a dielectric layer placed between oscillating electric dipole and metallic surface, which explains the experimental results of molecular fluorescence into surface plasmon modes. The theory based on angular spectrum representation and tunneling current provides us with a clear identification of plasmonic excitation transfer, transmission loss associated with plasmon transport in metallic layer, and energy dissipation or quenching of excitation due to surface plasmon excitation at the metallic surface in relation to the characteristic complex wave number of evanescent waves.

  • A Proposal on a New Algorithm for Volume Calculation Based on Laser Microscope Data

    Makoto HASEGAWA  Masato AKITA  Kazutaka IZUMI  Takayoshi KUBONO  

     
    LETTER-Contact Phenomena

      Vol:
    E88-C No:8
      Page(s):
    1573-1576

    We initiated development of our own data processing software for laser microscope data with C# language. This software is provided with volume calculation function of a target portion, based on a new calculation algorithm that can precisely handle the volume calculation of the portion located on a tilted surface or on a distorted surface. In this paper, this algorithm and some exemplary results obtained thereby, as well as some further development aims, are briefly described.

  • An Ultra-Small Double-Surface Electrode RFID Chip

    Mitsuo USAMI  

     
    INVITED PAPER

      Vol:
    E88-C No:8
      Page(s):
    1711-1715

    An ultra-small (0.3-mm0.3-mm0.06-mm) radio frequency identification chip called the µ-chip has been developed for use in a wide range of individual recognition applications. The chip is designed to be thin enough to be applied to paper and paper-like media that are widely used in retailing to create certificates with monetary value, as well as to token-type devices. The µ-chip has been designed and fabricated using 0.18-µm standard CMOS technology. This ultra-small RFID chip also has a low-cost oriented device structure of a double-surface electrode to simplify the process of connecting the antenna and chip. The measured characteristics of the prototype chip are presented, demonstrating the capability of the new chip as an RFID device.

  • The Boundary Surface Control Principle and Its Applications

    Shiro ISE  

     
    INVITED PAPER

      Vol:
    E88-A No:7
      Page(s):
    1656-1664

    In order to control a sound field using multiple sources and microphones, we must choose the optimum values of parameters such as the numbers of sources and microphones, the location of the sources and the microphones and the filter tap length. Because there is a huge number of possible combinations of these conditions, the boundary surface control principle can be useful as a basis of a design method of such a system. In this paper, a design method of sound field reproduction and active noise control based on the BSC principle are described and several example of its application are presented.

  • Web-based Constructive Shape Modeling Using Real Distance Functions

    Pierre-Alain FAYOLLE  Benjamin SCHMITT  Yuichiro GOTO  Alexander PASKO  

     
    PAPER

      Vol:
    E88-D No:5
      Page(s):
    828-835

    We present an approach and a web-based system implementation for modeling shapes using real distance functions. The system consists of an applet supporting the HyperFun modeling language. The applet is extended with primitives defined by Euclidean distance from a point to the surface of the shape. Set-theoretic operations (union, intersection, difference) that provide an approximation of the Euclidean distance to a shape built in a constructive way are introduced. Such operations have a controllable error of the exact Euclidean distance to the shape and preserve C1 continuity of the overall function, which is an important condition for further operations and applications. The proposed system should help model various shapes, store them in a concise form, and exchange them easily between different entities on a network. The applet offers also the possibility to export the models defined in the HyperFun language to other formats for raytracing or rapid prototyping.

  • A Compact Model of the Pinch-off Region of 100 nm MOSFETs Based on the Surface-Potential

    Dondee NAVARRO  Takeshi MIZOGUCHI  Masami SUETAKE  Kazuya HISAMITSU  Hiroaki UENO  Mitiko MIURA-MATTAUSCH  Hans Jurgen MATTAUSCH  Shigetaka KUMASHIRO  Tetsuya YAMAGUCHI  Kyoji YAMASHITA  Noriaki NAKAYAMA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E88-C No:5
      Page(s):
    1079-1086

    We have developed a model for circuit-simulation which describes the MOSFET region from pinch-off to drain contact based on the surface potential. The model relates the surface-potential increase beyond the pinch-off point to the channel/drain junction profile by applying the Gauss law with the assumption that the lateral field is greater than the vertical one. Explicit equations for the lateral field and the pinch-off length are obtained, which take the potential increase in the drain overlap region into account. The model, as implemented into a circuit simulator, correctly reproduces measured channel conductance and overlap capacitance for 100 nm pocket-implant technologies as a function of bias condition and gate length.

  • Evaluation of Surface States of AlGaN/GaN HFET Using Open-Gated Structure

    Daigo KIKUTA  Jin-Ping AO  Yasuo OHNO  

     
    PAPER-Compound Semiconductor Devices

      Vol:
    E88-C No:4
      Page(s):
    683-689

    We analyzed passivation film and the AlGaN surface states using open-gated structures of AlGaN/GaN HFETs by numerical simulation and experiments. From the analyses, we confirmed that insulating film conductivity plays the prominent roles in device performances of the wide bandgap semiconductor device. Device simulation confirmed that the difference in ID-VG characteristics is due to the trapping type of the surface states; electron-trap type or hole-trap type. For electron-trap type surface states, the surface potential pinned at electron quasi-Fermi level, which is the same as the channel potential in the open-gated FETs. As a result, surface potential of ungated region is equal to the channel electric potential resulting in the uncontrollability of the channel current by the edge placed gate electrode. For hole-trap type surface states, the surface potential is pinned at hole quasi-Fermi level, which must be the same as the edge placed gate electrode potential. Then, the AlGaN surface potential varies with the electrode potential variation allowing the control of channel current as if the whole channel is covered with a metal electrode. Experiments for open-gated FET with unpassivated surface show no current variation. This corresponds to electron-trap type surface states from the simulation. On the other hand, SiOX evaporated open-gated FET show current control by the gate electrode. The ID-VG characteristics resembles in simulated ID-VG characteristics with hole-trap surface states. However, the estimated time constants for the trap reactions are incredibly long due to the deep energy level for the surface states in wide bandgap semiconductors. In addition, the open-gated FET showed reverse threshold shift to the value expected from the hole-trap pinning levels. So, we concluded that the no current variation for the unpassivated open-gated FET can be attributed to electron traps in the surface states, but the control of the drain current for SiOX deposited open-gated FET is not by surface hole-traps, but by slightly conductive passivation film of SiOX.

  • Surface Waves along a Boundary of Single Negative Material

    Masashi HOTTA  Mitsuo HANO  Ikuo AWAI  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:2
      Page(s):
    275-278

    Existence of a surface wave along the boundary between the semi-infinite materials, one of which is a free-space and the other is a material with either negative permeability or negative permittivity, is theoretically investigated. Surface waves exist in only limited combination of negative and positive signs of the material parameters. In addition, by analyzing the surface wave in a finite-thickness slab with negative permeability, its mode profile has been obtained for two different types of symmetry. From these results, the present paper predicts the possibility of a surface wave directional coupler based on a single slab transmission along its top and bottom surfaces.

  • Analysis of Adsorbing Molecules on Pt Surface Using Electrochemical Impedance Spectroscopy

    Kenshi HAYASHI  Kosuke HAYAMA  Kumi MASUNAGA  Wataru FUTAGAMI  Seung-Woo LEE  Kiyoshi TOKO  

     
    PAPER-Bioelectronic and Sensor

      Vol:
    E87-C No:12
      Page(s):
    2087-2092

    Chemical sensor which can be used for a multi-purpose chemical measurement to detect various chemical substances with a small number of a sensor array was investigated. It was confirmed that chemical compounds adsorbed strongly and irreversibly on a platinum surface using conventional electrochemical methods and an instrumental surface analysis. The adsorbates were also analyzed by means of an electrochemical impedance spectroscopy under dynamic potential scan; measured impedance reflects CPE (constant phase element) properties of the electrode surface. The method provides a convenient technique for the surface analysis of adsorbing chemicals. The CPE response profile was modified through chemical adsorption/desorption and the interaction between the polarized surface and chemical substances. Consequently, various profiles depending on chemical substances were obtained and it had quantitative and qualitative information about chemicals interacting with the surface. The present method which does not require a specific electrochemical reaction can be applied for multi-purpose chemical sensors and also simple chemical analyses.

  • Backlight Unit with Double Surface Light Emission Using a Single Micro-Structured Light-Guide Plate

    Kalil KALANTAR  Shingo MATSUMOTO  Tatsuya KATOH  Toshiyuki MIZUNO  

     
    INVITED PAPER

      Vol:
    E87-C No:11
      Page(s):
    1954-1961

    A double surface light emission backlight that uses single light-guide plate, has been developed for illumination of two liquid-crystal displays (LCD) on its front and rear, to be used in a cellular phone. The light-guide plate has a trapezoid cross-section with arrays of optical micro deflector and micro prism on the front and the rear surfaces, respectively. Propagated light, forward and backward, inside the light-guide plate are controlled and directed toward LCDs using only two prism sheets with internal reflection characteristic, each for the front and the rear. Only three optical components and four light-emitting diodes (LEDs) are used in the new structure compared with ten components and six LEDs of the current type. Comparing with the current type, the thickness and power consumption of the new backlight are reduced by a factor of 0.59 and 0.67, respectively.

  • Shrink-Wrapped Boundary Face (SWBF) Algorithm for Mesh Reconstruction from Unorganized 3D Points

    Young-Kyu CHOI  Bon-Ki KOO  Byoung-Tae CHOI  

     
    LETTER-Computer Graphics

      Vol:
    E87-D No:9
      Page(s):
    2283-2285

    A new mesh reconstruction method, called the shrink-wrapped boundary face (SWBF) algorithm, is proposed for approximating a surface from a set of unorganized 3D points. SWBF overcomes the genus-0 spherical topology restriction of previous shrink-wrapping based mesh generation technique. Furthermore, SWBF is much faster since it requires only local nearest-point-search in the shrinking process. Our experimental results demonstrate that SWBF is very robust and efficient, and it is expected to become a general solution for reconstructing a mesh from an unorganized points cloud.

  • The 3D Measurement and Analysis of High Precision Surfaces Using Con-Focal Optical Methods

    John McBRIDE  Christian MAUL  

     
    INVITED PAPER

      Vol:
    E87-C No:8
      Page(s):
    1261-1267

    The paper reviews methods for the measurement and analysis of high precision surfaces. A number of measurement techniques are discussed with the emphasis on the application of con-focal methods. The various techniques are compared in terms of measurement times, data density, and the ability to detect near vertical surfaces, and steps. The two sensing methods discussed are the auto-focus laser method and the white light methods. Particular applications considered are in the measurement of eroded electrical contact surfaces, spherical and near spherical surfaces, and MEMS. The particular emphasis here is on the metrology of such surfaces and devices and methods for the assessment of complex micro-machined surfaces. The paper points to a number of directions for improved metrology and discusses these in the context of the application given.

  • A Novel Approach to Sampling the Coiled Tubing Surface with an Application for Monte Carlo Direct Lighting

    Chung-Ming WANG  Peng-Cheng WANG  

     
    PAPER-Computer Graphics

      Vol:
    E87-D No:6
      Page(s):
    1545-1553

    Sampling is important for many applications in research areas such as graphics, vision, and image processing. In this paper, we present a novel stratified sampling algorithm (SSA) for the coiled tubing surface with a given probability density function. The algorithm is developed from the inverse function of the integration for the areas of the coiled tubing surface. We exploit a Hierarchical Allocation Strategy (HAS) to preserve sample stratification when generating any desirable sample numbers. This permits us to reduce variances when applying our algorithm to Monte Carlo Direct Lighting for realistic image generation. We accelerate the sampling process using a segmentation technique in the integration domain. Our algorithm thus runs 324 orders of magnitude faster when using faster SSA algorithm where the order of the magnitude is proportional to the sample numbers. Finally, we employ a parabolic interpolation technique to decrease the average errors occurred for using the segmentation technique. This permits us to produce nearly constant average errors, independent of the sample numbers. The proposed algorithm is novel, efficient in computing and feasible for realistic image generation using Monte Carlo method.

  • Design Optimization Methodology for On-Chip Spiral Inductors

    Kenichi OKADA  Hiroaki HOSHINO  Hidetoshi ONODERA  

     
    PAPER

      Vol:
    E87-C No:6
      Page(s):
    933-941

    This paper presents a methodology for optimizing the layout of on-chip spiral inductors using structural parameters and design frequency in a response surface method. The proposed method uses scattering parameters (S-parameter) to express inductor characteristics, and hence is independent of spiral geometries and equivalent circuit models. The procedure of inductor optimization is described, and a design example is presented.

  • Surface Deformation Displays for Virtual Environment Using the Fuzzy Model

    MinKee PARK  Hideki HASHIMOTO  

     
    PAPER

      Vol:
    E87-D No:6
      Page(s):
    1422-1432

    In this paper, a new method for displaying a surface deformation is proposed to provide sufficient realism in virtual environment. The approach selected in this paper is based on the fuzzy model and it is sufficient that only one additional rule be added to the fuzzy model to display a surface deformation. Furthermore, designers can easily determine which parameters should be used and how much they should be changed in order to alter shapes as required. The proposed method, thus, is a simple, but effective technique that can also be applied to real time operation and makes it possible to act on several surface points simultaneously. The results of the computer simulation are also given to demonstrate the validity of the proposed algorithm.

  • Two-Sapphire-Rod-Resonator Method to Measure the Surface Resistance of High-Tc Superconductor Films

    Toru HASHIMOTO  Yoshio KOBAYASHI  

     
    PAPER-General Methods, Materials, and Passive Circuits

      Vol:
    E87-C No:5
      Page(s):
    681-688

    Precise designs are presented for sapphire rod resonators of three types, which have been proposed by the IEC/TC90/WG8 in the standard measurement method of the surface resistance Rs of high-Tc superconductor (HTS) films; an open-type, a cavity-type and a closed-type. In order to separate TE011 and TE013 modes, which are used in Rs measurements, from the other modes, appropriate dimensions for these three resonators are determined from mode charts calculated from a rigorous analysis based on the mode matching method, taking account of an uniaxial-anisotropic characteristic of sapphire. Comparison of the open-type resonator with the closed-type is performed. For the open-type, the unloaded Q values of both the TE011 and TE013 modes are reduced by radiations of a leaky state TM310 mode. Finally, validity of the design and a two-sapphire-rod-resonator method will be verified by experiments.

  • Experimental Study of Non-specular Wave Scattering from Building Surface Roughness for the Mobile Propagation Modeling

    Hary BUDIARTO  Kenshi HORIHATA  Katsuyuki HANEDA  Jun-ichi TAKADA  

     
    PAPER-Antenna and Propagation

      Vol:
    E87-B No:4
      Page(s):
    958-966

    In the urban area, buildings are the main scatterer which dominate the mobile propagation characteristics. However, reflection, diffraction, and scattering on the building surfaces in the radio environment induce undesirable multipath propagation. Multipath prediction with respect to a building surface has been conventionally based on an assumption that reflection from the surface has a substantial specular direction. However non-specular scattering from the building surface can affect the channel characteristics as well as specular scattering. This paper presents multipath characteristics of non-specular wave scattering from building surface roughness based on the experimental results. Superresolution method was applied as an approach to handle the signal parameters (DoA, ToA) of the individual incoming waves reflected from building surface roughness. The results show that the multipaths can be detected at many scatterers, such as ground, window's glass, window's frames and bricks surface, as well as directly from the transmitter. Most of the scattered waves are arriving closely from specular directions. The measured reflection coefficients were well bounded by reflection coefficients of the theoretically smooth and random rough surface. The Fresnel reflection coefficient formula, considering the finite thickness of the building surface and Gaussian scattering correction, give better prediction for glass and bricks reflection coefficient measurement.

  • High Index-Contrast 2D Photonic Band-Edge Laser

    Soon-Hong KWON  Yong-Hee LEE  

     
    INVITED PAPER

      Vol:
    E87-C No:3
      Page(s):
    308-315

    Free-standing 2D slab photonic band-edge lasers based on square lattice and triangular lattice are realized by optical pumping at room-temperature. Both in-plane-emission and surface-emission photonic band-edge lasers are observed and compared. Analyses on optical loss mechanisms for finite-size photonic band-edge lasers are also discussed.

  • Finite-Difference Time-Domain Simulation of Two-Dimensional Photonic Crystal Surface-Emitting Laser Having a Square-Lattice Slab Structure

    Mitsuru YOKOYAMA  Susumu NODA  

     
    PAPER

      Vol:
    E87-C No:3
      Page(s):
    386-392

    By means of the three-dimensional (3D) finite-difference time domain (FDTD) method, we have investigated in detail the optical properties of a two-dimensional photonic crystal (PC) surface-emitting laser having a square-lattice structure. The 3D-FDTD calculation is carried out for the finite size PC slab structure. The device is based on band-edge resonance, and plural band edges are present at the corresponding band edge point. For these band edges, we calculate the mode profile in the PC slab, far field pattern (FFP) and polarization mode of the surface-emitted component, and photon lifetime. FFPs are shown to be influenced by the finiteness of the structure. Quality (Q) factor, which is a dimensionless quantity representing photon lifetime, is introduced. The out-plane radiation loss in the direction normal to the PC plane greatly influences the total Q factor of resonant mode and is closely related with the band structure. As a result, Q factors clearly differ among these band edges. These results suggest that these band edges include resonant modes that are easy to lase and resonant modes that are difficult to lase.

201-220hit(415hit)