The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SURF(415hit)

121-140hit(415hit)

  • Scalar Multiplication on Kummer Surface Revisited

    Qiping LIN  Fangguo ZHANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E95-A No:1
      Page(s):
    410-413

    The main benefit of HECC is that it has much smaller parameter sizes and offers equivalent security as ECC and RSA. However, there are still more researches on ECC than on HECC. One of the reasons is that the computation of scalar multiplication cannot catch up. The Kummer surface can speed up the scalar multiplication in genus two curves. In this paper, we find that the scalar multiplication formulas of Duquesne in characteristic p > 3 on the Kummer surface are not correct. We verify and revise the formulas with mathematical software. The operation counts become 29M + 2S for new pseudo-addition formulas and 30M + 10S for doubling ones. And then we speed up the scalar multiplication on the Kummer surface with Euclidean addition chains.

  • Accurate Surface Change Detection Method Using Phase of Coherence Function on SAR Imagery

    Takehiro HOSHINO  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E95-B No:1
      Page(s):
    263-270

    Satellite-borne SAR (synthetic aperture radar) is for high-resolution geosurface measurements. Recently, a feature extraction method based on CCD (coherent change detection) was developed, where a slight surface change on the geosurface is detected using the phase relationship between sequential complex SAR images of the same region made at different times. For accurate detection of the surface change, the log-likelihood method has been proposed. This method determines an appropriate threshold for change detection, making use of the phase characteristic of the changed area, and thus enhances the detection probability. However, this and other conventional methods do not seek to proactively employ phase information of the estimated coherence function, and their detection probability is often low, especially in the case that the target has small surface or local uniform changes. To overcome this problem, this paper proposes a novel transformation index that considers the phase difference of the coherence function. Furthermore, we introduce a pre-processing calibration method to compensate the bias error for the coherence phase which resulting mainly from the orbit error of the antenna platform. Finally, the results from numerical simulations and experiment modeling of the geosurface measurement verify the effectiveness of the proposed method, even in situations with low SNR (signal to noise ratio).

  • Method of Image Green's Function in Grating Theory

    Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    BRIEF PAPER-Periodic Structures

      Vol:
    E95-C No:1
      Page(s):
    93-96

    This paper deals with the diffraction of a transverse magnetic (TM) plane wave by a perfectly conductive periodic surface by an integral method. However, it is known that a conventional integral method does not work for a critical angle of incidence, because of divergence of a periodic Green's function (integral kernel). To overcome such a divergence difficulty, we introduce an image Green's function which is physically defined as a field radiated from an infinite phased array of dipoles. By use of the image Green's function, it is newly shown that the diffracted field is represented as a sum of radiation from the periodic surface and its image surface. Then, this paper obtains a new image integral equation for the basic surface current, which is solved numerically. A numerical result is illustrated for a very rough sinusoidal surface. Then, it is concluded that the method of image Green's function works practically even at a critical angle of incidence.

  • Hybrid Parallel Extraction of Isosurface Components from 3D Rectilinear Volume Data

    Bong-Soo SOHN  

     
    LETTER-Computer Graphics

      Vol:
    E94-D No:12
      Page(s):
    2553-2556

    We describe an efficient algorithm that extracts a connected component of an isosurface, or a contour, from a 3D rectilinear volume data. The efficiency of the algorithm is achieved by three factors: (i) directly working with rectilinear grids, (ii) parallel utilization of a multi-core CPU for extracting active cells, the cells containing the contour, and (iii) parallel utilization of a many-core GPU for computing the geometries of a contour surface in each active cell using CUDA. Experimental results show that our hybrid parallel implementation achieved up to 20x speedup over existing methods on an ordinary PC. Our work coupled with the Contour Tree framework is useful for quickly segmenting, displaying, and analyzing a feature of interest in 3D rectilinear volume data without being distracted by other features.

  • Nano-Structured Organic Devises and Biosensors Utilizing Evanescent Waves and Surface Plasmon Resonance Open Access

    Futao KANEKO  Akira BABA  Kazunari SHINBO  Keizo KATO  

     
    INVITED PAPER

      Vol:
    E94-C No:12
      Page(s):
    1824-1831

    In this review, we introduce a variety of surface sensitive techniques for the study of organic thin films, and applications to organic devices. These studies include surface plasmon emission light, organic thin film transistors, combination of quartz crystal microbalance and optical waveguide spectroscopy, evaluation of alignment of liquid crystal molecules at surfaces, and biosensor applications.

  • A Novel Feeding Structure to Generate Multiple Transmission Zeros for Miniature Waveguide Bandpass Filters Composed of Frequency-Selective Surfaces

    Masataka OHIRA  Zhewang MA  Hiroyuki DEGUCHI  Mikio TSUJI  

     
    PAPER-Passive Devices and Circuits

      Vol:
    E94-C No:10
      Page(s):
    1586-1593

    In this paper, we propose a novel feeding structure for a coaxial-excited compact waveguide filter, which is composed of planar resonators called frequency-selective surfaces (FSSs). In our proposed feeding structure, new FSSs located at the input and output ports are directly excited by the coaxial line. By using the FSSs, the transition from the TEM mode to the TE10 mode is realized by the resonance of the FSSs. Therefore, the backshort length from the coaxial probe to the shorted waveguide end can be made much shorter than one-quarter of the guided wavelength. Additionally, the coaxial-excited FSS provides one transmission zero at each stopband. As a design example, a three-stage bandpass filter with 4% bandwidth at the X band is demonstrated. The designed filter has a very compact size of one cavity and has high skirt selectivity with six transmission zeros. The effectiveness of the design is confirmed by the comparison of frequency characteristics obtained by the simulation and measurement.

  • A Fully-Implantable Wireless System for Human Brain-Machine Interfaces Using Brain Surface Electrodes: W-HERBS Open Access

    Masayuki HIRATA  Kojiro MATSUSHITA  Takafumi SUZUKI  Takeshi YOSHIDA  Fumihiro SATO  Shayne MORRIS  Takufumi YANAGISAWA  Tetsu GOTO  Mitsuo KAWATO  Toshiki YOSHIMINE  

     
    INVITED PAPER

      Vol:
    E94-B No:9
      Page(s):
    2448-2453

    The brain-machine interface (BMI) is a new method for man-machine interface, which enables us to control machines and to communicate with others, without input devices but directly using brain signals. Previously, we successfully developed a real time control system for operating a robot arm using brain-machine interfaces based on the brain surface electrodes, with the purpose of restoring motor and communication functions in severely disabled people such as amyotrophic lateral sclerosis patients. A fully-implantable wireless system is indispensable for the clinical application of invasive BMI in order to reduce the risk of infection. This system includes many new technologies such as two 64-channel integrated analog amplifier chips, a Bluetooth wireless data transfer circuit, a wirelessly rechargeable battery, 3 dimensional tissue-fitting high density electrodes, a titanium head casing, and a fluorine polymer body casing. This paper describes key features of the first prototype of the BMI system for clinical application.

  • Real-Time Spatial Surface Modeling System Using Wand Traversal Patterns of Grid Edges

    Harksu KIM  Dongtaek KIM  Jaeeung LEE  Youngho CHAI  

     
    PAPER-Human-computer Interaction

      Vol:
    E94-D No:8
      Page(s):
    1620-1627

    This paper presents a grid-based, real-time surface modeling algorithm in which the generation of a precise 3D model is possible by considering the user's intention during the course of the spatial input. In order to create the corresponding model according to the user's input data, plausible candidates of wand traversal patterns of grid edges are defined by considering the sequential and directional characteristics of the wand input. The continuity of the connected polygonal surfaces, including the octree space partitioning, is guaranteed without the extra crack-patching algorithm and the pre-defined patterns. Furthermore, the proposed system was shown to be a suitable and effective surface generation tool for the spatial sketching system. It is not possible to implement the unusual input intention of the 3D spatial sketching system using the conventional Marching Cubes algorithm.

  • Asymptotic Calculation of the Received Intensity of Multi-Path Millimeter Waves Transmitted over an Undulating Surface

    Toshio IHARA  Kenji SEKI  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:8
      Page(s):
    2298-2305

    This paper presents the initial results of a study of an asymptotic method for calculating the received intensity of multi-path millimeter waves transmitted over an undulating surface. First, an integral expression of the received intensity is derived using a physical optics approximation. Then its zero-th order asymptotic expression is derived, using the Pearcey integral, for the case where the phase function appearing in the integrand can be approximated by a quartic polynomial. A numerical examination made at 59.5 GHz showed that the asymptotic method is in good agreement with the physical optics method, even in cases where the geometrical optics method deviates significantly from the physical optics method, and that the range of applicability of the asymptotic method has its upper bound somewhere around a transmission distance to surface undulation wavelength ratio of 2.

  • A “Group Marching Cube” (GMC) Algorithm for Speeding up the Marching Cube Algorithm

    Lih-Shyang CHEN  Young-Jinn LAY  Je-Bin HUANG  Yan-De CHEN  Ku-Yaw CHANG  Shao-Jer CHEN  

     
    PAPER-Computer Graphics

      Vol:
    E94-D No:6
      Page(s):
    1289-1298

    Although the Marching Cube (MC) algorithm is very popular for displaying images of voxel-based objects, its slow surface extraction process is usually considered to be one of its major disadvantages. It was pointed out that for the original MC algorithm, we can limit vertex calculations to once per vertex to speed up the surface extraction process, however, it did not mention how this process could be done efficiently. Neither was the reuse of these MC vertices looked into seriously in the literature. In this paper, we propose a “Group Marching Cube” (GMC) algorithm, to reduce the time needed for the vertex identification process, which is part of the surface extraction process. Since most of the triangle-vertices of an iso-surface are shared by many MC triangles, the vertex identification process can avoid the duplication of the vertices in the vertex array of the resultant triangle data. The MC algorithm is usually done through a hash table mechanism proposed in the literature and used by many software systems. Our proposed GMC algorithm considers a group of voxels simultaneously for the application of the MC algorithm to explore interesting features of the original MC algorithm that have not been discussed in the literature. Based on our experiments, for an object with more than 1 million vertices, the GMC algorithm is 3 to more than 10 times faster than the algorithm using a hash table. Another significant advantage of GMC is its compatibility with other algorithms that accelerate the MC algorithm. Together, the overall performance of the original MC algorithm is promoted even further.

  • DSP-Based Parallel Implementation of Speeded-Up Robust Features

    Chao LIAO  Guijin WANG  Quan MIAO  Zhiguo WANG  Chenbo SHI  Xinggang LIN  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E94-D No:4
      Page(s):
    930-933

    Robust local image features have become crucial components of many state-of-the-art computer vision algorithms. Due to limited hardware resources, computing local features on embedded system is not an easy task. In this paper, we propose an efficient parallel computing framework for speeded-up robust features with an orientation towards multi-DSP based embedded system. We optimize modules in SURF to better utilize the capability of DSP chips. We also design a compact data layout to adapt to the limited memory resource and to increase data access bandwidth. A data-driven barrier and workload balance schemes are presented to synchronize parallel working chips and reduce overall cost. The experiment shows our implementation achieves competitive time efficiency compared with related works.

  • Fast Detection of Robust Features by Reducing the Number of Box Filtering in SURF

    Hanhoon PARK  Hideki MITSUMINE  Mahito FUJII  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E94-D No:3
      Page(s):
    725-728

    Speeded up robust features (SURF) can detect scale- and rotation-invariant features at high speed by relying on integral images for image convolutions. However, since the number of image convolutions greatly increases in proportion to the image size, another method for reducing the time for detecting features is required. In this letter, we propose a method, called ordinal convolution, of reducing the number of image convolutions for fast feature detection in SURF and compare it with a previous method based on sparse sampling.

  • Surface Plasmon Excitation and Emission Light Properties Using Hybrid Setup of Prism and Grating Coupling

    Kazunari SHINBO  Yuta HIRANO  Masayuki SAKAI  Masahiro MINAGAWA  Yasuo OHDAIRA  Akira BABA  Keizo KATO  Futao KANEKO  

     
    BRIEF PAPER

      Vol:
    E94-C No:2
      Page(s):
    196-197

    A half-cylindrical BK-7 prism/dielectric film with a grating/Ag film/fluorescent polymer film structure was prepared, and its surface plasmon (SP) excitation property was investigated. It was confirmed experimentally that SP excitations are possible in this structure by using prism and grating couplings. The SP excitation property depended on the direction of the grating vector. Furthermore, intense photoluminescence was observed when the SPs were simultaneously excited at the Ag/polymer interface by prism coupling and at the Cytop/Ag interface by grating coupling.

  • A Further Improved Technique on the Stochastic Functional Approach for Randomly Rough Surface Scattering -- Analytical-Numerical Wiener Analysis --

    Yasuhiko TAMURA  

     
    PAPER-Random Media and Rough Surfaces

      Vol:
    E94-C No:1
      Page(s):
    39-46

    This paper proposes a further improved technique on the stochastic functional approach for randomly rough surface scattering. The original improved technique has been established in the previous paper [Waves in Random and Complex Media, vol.19, no.2, pp.181-215, 2009] as a novel numerical-analytical method for a Wiener analysis. By deriving modified hierarchy equations based on the diagonal approximation solution of random wavefields for a TM plane wave incidence or even for a TE plane wave incidence under large roughness, large slope or low grazing incidence, such a further improved technique can provide a large reduction of required computational resources, in comparison with the original improved technique. This paper shows that numerical solutions satisfy the optical theorem with very good accuracy, by using small computational resources.

  • Reflection, Diffraction and Scattering at Low Grazing Angle of Incidence: Regular and Random Systems Open Access

    Junichi NAKAYAMA  

     
    INVITED PAPER

      Vol:
    E94-C No:1
      Page(s):
    2-9

    When a monochromatic electromagnetic plane wave is incident on an infinitely extending surface with the translation invariance property, a curious phenomenon often takes place at a low grazing angle of incidence, at which the total wave field vanishes and a dark shadow appears. This paper looks for physical and mathematical reasons why such a shadow occurs. Three cases are considered: wave reflection by a flat interface between two media, diffraction by a periodic surface, and scattering from a homogeneous random surface. Then, it is found that, when a translation invariant surface does not support guided waves (eigen functions) propagating with real propagation constants, such the shadow always takes place, because the primary excitation disappears at a low grazing angle of incidence. At the same time, a shadow form of solution is proposed. Further, several open problems are given for future works.

  • A Reflectance Model for Metallic Paints Using a Two-Layer Structure Surface with Microfacet Distributions

    Gang Yeon KIM  Kwan H. LEE  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E93-D No:11
      Page(s):
    3076-3087

    We present a new method that can represent the reflectance of metallic paints accurately using a two-layer reflectance model with sampled microfacet distribution functions. We model the structure of metallic paints simplified by two layers: a binder surface that follows a microfacet distribution and a sub-layer that also follows a facet distribution. In the sub-layer, the diffuse and the specular reflectance represent color pigments and metallic flakes respectively. We use an iterative method based on the principle of Gauss-Seidel relaxation that stably fits the measured data to our highly non-linear model. We optimize the model by handling the microfacet distribution terms as a piecewise linear non-parametric form in order to increase its degree of freedom. The proposed model is validated by applying it to various metallic paints. The results show that our model has better fitting performance compared to the models used in other studies. Our model provides better accuracy due to the non-parametric terms employed in the model, and also gives efficiency in analyzing the characteristics of metallic paints by the analytical form embedded in the model. The non-parametric terms for the microfacet distribution in our model require densely measured data but not for the entire BRDF(bidirectional reflectance distribution function) domain, so that our method can reduce the burden of data acquisition during measurement. Especially, it becomes efficient for a system that uses a curved-sample based measurement system which allows us to obtain dense data in microfacet domain by a single measurement.

  • Novel Negative Permittivity Structure and Its Application to Excitation of Surface Plasmon in Microwave Frequency Range

    Yujiro KUSHIYAMA  Toru UNO  Takuji ARIMA  

     
    PAPER-Electromagnetic Analysis

      Vol:
    E93-B No:10
      Page(s):
    2629-2635

    This paper proposes a novel metamaterial structure, which equivalently indicates negative permittivity, for the purpose of applying it to a near-field imaging and/or diagnostics of electromagnetic properties by using a surface plasmon in microwave frequency range. The proposed structure consists of a conducting wire lattice with conducting spheres embedded at the mid-point of the wire. It is shown that a spatial dispersion of the wire lattice can be reduced significantly by the sphere. It is also shown that this structure can successfully be applied to an excitation of the surface plasmon in the microwave frequency range by adequately cutting into a thin slab.

  • Bandwidth and Gain Enhancement of Microstrip Patch Antennas Using Reflective Metasurface Open Access

    Sarawuth CHAIMOOL  Kwok L. CHUNG  Prayoot AKKARAEKTHALIN  

     
    INVITED PAPER

      Vol:
    E93-B No:10
      Page(s):
    2496-2503

    Bandwidth and gain enhancement of microstrip patch antennas (MPAs) is proposed using reflective metasurface (RMS) as a superstrate. Two different types of the RMS, namely- the double split-ring resonator (DSR) and double closed-ring resonator (DCR) are separately investigated. The two antenna prototypes were manufactured, measured and compared. The experimental results confirm that the RMS loaded MPAs achieve high-gain as well as bandwidth improvement. The desinged antenna using the RMS as a superstrate has a high-gain of over 9.0 dBi and a wide impedance bandwidth of over 13%. The RMS is also utilized to achieve a thin antenna with a cavity height of 6 mm, which is equivalent to λ/21 at the center frequency of 2.45 GHz. At the same time, the cross polarization level and front-to-back ratio of these antennas are also examined.

  • Simple Analytical Formulas for Estimating IR-Drops in an Early Design Stage

    Kazuyuki OOYA  Yuji TAKASHIMA  Atsushi KUROKAWA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:9
      Page(s):
    1585-1593

    In an early design stage of LSI designing, finding out the proper parameters for power planning is important from the viewpoint of cost minimization. In this paper, we present simple analytical formulas which are used to obtain the initial parameters close to the proper power distribution networks in the early design stage. The formulas for estimating static and pseudo-dynamic voltage drops (IR-drops) are derived by the response surface method (RSM). By making the formulas once, they can be used for the general power planning for the power-grid style in any process technology.

  • 2D Device Simulation of AlGaN/GaN HFET Current Collapse Caused by Surface Negative Charge Injection

    Yusuke IKAWA  Yorihide YUASA  Cheng-Yu HU  Jin-Ping AO  Yasuo OHNO  

     
    PAPER-GaN-based Devices

      Vol:
    E93-C No:8
      Page(s):
    1218-1224

    Drain collapse in AlGaN/GaN HFET is analyzed using a two-dimensional device simulator. Two-step saturation is obtained, assuming hole-trap type surface states on the AlGaN surface and a short negative-charge-injected region at the drain side of the gate. Due to the surface electric potential pinning by the surface traps, the negative charge injected region forms a constant potential like in a metal gate region and it acts as an FET with a virtual gate. The electron concentration profile reveals that the first saturation occurs by pinch-off in the virtual gate region and the second saturation occurs by the pinch-off in the metal gate region. Due to the short-channel effect of the virtual gate FET, the saturation current increases until it finally reaches the saturation current of the intrinsic metal gate FET. Current collapses with current degradation at the knee voltage in the I-V characteristics can be explained by the formation of the virtual gate.

121-140hit(415hit)