The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SURF(415hit)

141-160hit(415hit)

  • Fast Surface Profiling by White-Light Interferometry Using Symmetric Spectral Optical Filter

    Akira HIRABAYASHI  

     
    PAPER-Measurement Technology

      Vol:
    E93-A No:2
      Page(s):
    542-549

    We propose a surface profiling algorithm by white-light interferometry that extends sampling interval to twice of the widest interval among those used in conventional algorithms. The proposed algorithm uses a novel function called an in-phase component of an interferogram to detect the peak of the interferogram, while conventional algorithms used the squared-envelope function or the envelope function. We show that the in-phase component has the same peak as the corresponding interferogram when an optical filter has a symmetric spectral distribution. We further show that the in-phase component can be reconstructed from sampled values of the interferogram using the so-called quadrature sampling technique. Since reconstruction formulas used in the algorithm are very simple, the proposed algorithm requires low computational costs. Simulation results show the effectiveness of the proposed algorithm.

  • Estimation of Radio Communication Distance along Random Rough Surface

    Junichi HONDA  Kazunori UCHIDA  Kwang-Yeol YOON  

     
    PAPER

      Vol:
    E93-C No:1
      Page(s):
    39-45

    This paper is concerned with the estimation of radio communication distance when both the transmitter and receiver are arbitrarily distributed on a random rough surface such as desert, terrain, sea surface and so on. First, we simulate electromagnetic wave propagation along the rough surface by using the discrete ray tracing method (DRTM) proposed by authors recently. Second, we determine three parameters by conjugate gradient method (CGM) combined with the method of least-squares. Finally, we derive an analytical expression which can estimate the maximum communication distance when the input power of a transmitter and the minimum detectable electric intensity of a receiver are specified. Random rough surfaces are assumed to be Gaussian, pn-th order power law or exponential distributions.

  • TE Plane Wave Scattering and Diffraction from a Periodic Surface with Semi-infinite Extent

    Yasuhiko TAMURA  

     
    PAPER

      Vol:
    E93-C No:1
      Page(s):
    9-16

    This paper studies scattering and diffraction of a TE plane wave from a periodic surface with semi-infinite extent. By use of a combination of the Wiener-Hopf technique and a perturbation method, a concrete representation of the wavefield is explicitly obtained in terms of a sum of two types of Fourier integrals. It is then found that effects of surface roughness mainly appear on the illuminated side, but weakly on the shadow side. Moreover, ripples on the angular distribution of the first-order scattering in the shadow side are newly found as interference between a cylindrical wave radiated from the edge and an inhomogeneous plane wave supported by the periodic surface.

  • On the Estimation of Rough Surface Parameters from Surface Profile Data --- Correlation Length Estimate Using a Surface Slope Function ---

    Masahiko NISHIMOTO  Kohichi OGATA  

     
    BRIEF PAPER

      Vol:
    E93-C No:1
      Page(s):
    89-93

    Gaussian rough surfaces can be characterized by two roughness parameters, the root-mean-square height and correlation length. For accurate estimation of these parameters from measured surface height-profile, data samples with sufficiently long record length are necessary. In this letter, an expression of correlation length in terms of a surface slope function is introduced in order to estimate correlation length and analytical expression of the data record length required for accurate estimation is derived. The result shows that the method using the slope function can reduce the data record length approximately 60% as compared to the commonly employed method using the correlation function. In order to check the result, a Monte Carlo simulation is also carried out and the validity of the result is confirmed.

  • Design of Automotive VCSEL Transmitter with On-Chip Feedforward Optical Power Control

    Xin YIN  Johan BAUWELINCK  Tine DE RIDDER  Peter OSSIEUR  Xing-Zhi QIU  Jan VANDEWEGE  Olivier CHASLES  Arnaud DEVOS  Piet DE PAUW  

     
    PAPER-Electronic Circuits

      Vol:
    E92-C No:9
      Page(s):
    1201-1207

    We propose a novel 50 Mb/s optical transmitter fabricated in a 0.6 µm BiCMOS technology for automotive applications. The proposed VCSEL driver chip was designed to operate with a single supply voltage ranging from 3.0 V to 5.25 V. A fully integrated feedforward current control circuit is presented to stabilize the optical output power without any external components. The experimental results show that the optical output power can be stable within a 1.1 dB range and the extinction ratio greater than 14 dB over the automotive environmental temperature range of -40 to 105.

  • High Speed 1.1-µm-Range InGaAs-Based VCSELs Open Access

    Naofumi SUZUKI  Takayoshi ANAN  Hiroshi HATAKEYAMA  Kimiyoshi FUKATSU  Kenichiro YASHIKI  Keiichi TOKUTOME  Takeshi AKAGAWA  Masayoshi TSUJI  

     
    INVITED PAPER

      Vol:
    E92-C No:7
      Page(s):
    942-950

    We have developed InGaAs-based VCSELs operating around 1.1 µm for high-speed optical interconnections. By applying GaAsP barrier layers, temperature characteristics were considerably improved compared to GaAs barrier layers. As a result, 25 Gbps 100 error-free operation was achieved. These devices also exhibited high reliability. No degradation was observed over 3,000 hours under operation temperature of 150 and current density of 19 kA/cm2. We also developed VCSELs with tunnel junctions for higher speed operation. High modulation bandwidth of 24 GHz and a relaxation oscillation frequency of 27 GHz were achieved. 40 Gbps error-free operation was also demonstrated.

  • 10-Gb/s Optical Buffer Memory Using a Polarization Bistable VCSEL

    Takashi MORI  Yuuki SATO  Hitoshi KAWAGUCHI  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E92-C No:7
      Page(s):
    957-963

    Optical buffer memory for 10-Gb/s data signal is demonstrated experimentally using a polarization bistable vertical-cavity surface-emitting laser (VCSEL). The optical buffer memory is based on an optical AND gate function and the polarization bistability of the VCSEL. Fast AND gate operation responsive to 50-ps-width optical pulses is achieved experimentally by increasing the detuning frequency between an injection light into the VCSEL and a lasing light from the VCSEL. A specified bit is extracted from the 10-Gb/s data signal by the fast AND gate operation and is stored as the polarization state of the VCSEL by the polarization bistability. The corresponding numerical simulations are also performed using two-mode rate equations taking into account the detuning frequency. The simulation results confirm the fast AND gate operation by increasing the detuning frequency as well as the experimental results.

  • Degraded Frequency-Tuning Range and Oscillation Amplitude of LC-VCOs due to the Nonquasi-Static Effect in MOS Varactors

    Masataka MIYAKE  Daisuke HORI  Norio SADACHIKA  Uwe FELDMANN  Mitiko MIURA-MATTAUSCH  Hans Jurgen MATTAUSCH  Tatsuya OHGURO  Takahiro IIZUKA  Masahiko TAGUCHI  Shunsuke MIYAMOTO  

     
    PAPER

      Vol:
    E92-C No:6
      Page(s):
    777-784

    Frequency dependent properties of accumulation-mode MOS varactors, which are key elements in many RF circuits, are dominated by Non-Quasi-Static (NQS) effects in the carrier transport. The circuit performances containing MOS varactors can hardly be reproduced without considering the NQS effect in MOS-varactor models. For the LC-VCO circuit as an example it is verified that frequency-tuning range and oscillation amplitude can be overestimated by over 20% and more than a factor 2, respectively, without inclusion of the NQS effect.

  • Data Analysis Technique of Atomic Force Microscopy for Atomically Flat Silicon Surfaces

    Masahiro KONDA  Akinobu TERAMOTO  Tomoyuki SUWA  Rihito KURODA  Tadahiro OHMI  

     
    PAPER

      Vol:
    E92-C No:5
      Page(s):
    664-670

    A data analysis technology of atomic force microscopy for atomically flat silicon surfaces has been developed. Atomically flat silicon surfaces composed of atomic terraces and steps are obtained on (100) orientation 200 mm diameter wafers by annealing in pure argon ambience at 1,200 for 30 minutes. Atomically flat silicon surfaces are lead to improve the MOS inversion layer mobility and current drivability of MOSFETs and to decrease the fluctuations in electrical characteristics of MOSFETs. It is important to realize the technology that evaluates the flatness and the uniformity of atomically flat silicon surfaces. The off direction angle is calculated by using two straight edge lines selected from measurement data. And the off angle is calculated from average atomic terrace width under assumption that height difference between neighboring terraces is equal to the step height, 0.135 nm, of (100) silicon surface. The analyzing of flatness of each terrace can be realized by converting the measurement data using the off direction angle and the off angle. And, the average roughness of each terrace is about 0.017-0.023 nm. Therefore, the roughness and the uniformity of each terrace can be evaluated by this proposed technique.

  • Non-Quasi-Static Carrier Dynamics of MOSFETs under Low-Voltage Operation

    Masataka MIYAKE  Daisuke HORI  Norio SADACHIKA  Uwe FELDMANN  Mitiko MIURA-MATTAUSCH  Hans Jurgen MATTAUSCH  Takahiro IIZUKA  Kazuya MATSUZAWA  Yasuyuki SAHARA  Teruhiko HOSHIDA  Toshiro TSUKADA  

     
    PAPER

      Vol:
    E92-C No:5
      Page(s):
    608-615

    We analyze the carrier dynamics in MOSFETs under low-voltage operation. For this purpose the displacement (charging/discharging) current, induced during switching operations is studied experimentally and theoretically for a 90 nm CMOS technology. It is found that the experimental transient characteristics can only be well reproduced in the circuit simulation of low voltage applications by considering the carrier-transit delay in the compact MOSFET model. Long carrier transit delay under the low voltage switching-on operation results in long duration of the displacement current flow. On the other hand, the switching-off characteristics are independent of the bias condition.

  • HSWIS: Hierarchical Shrink-Wrapped Iso-Surface Algorithm

    Young-Kyu CHOI  Eun-Jin PARK  

     
    LETTER-Computer Graphics

      Vol:
    E92-D No:4
      Page(s):
    757-760

    A new hierarchical isosurface reconstruction scheme from a set of tomographic cross sectional images is presented. From the input data, we construct a hierarchy of volume, called the volume pyramid, based on a 3D dilation filter. After extracting the base mesh from the volume at the coarsest level by the cell-boundary method, we iteratively fit the mesh to the isopoints representing the actual isosurface of the volume. The SWIS (Shrink-wrapped isosurface) algorithm is adopted in this process, and a mesh subdivision scheme is utilized to reconstruct fine detail of the isosurface. According to experiments, our method is proved to produce a hierarchical isosurface which can be utilized by various multiresolution algorithms such as interactive visualization and progressive transmission.

  • A PN Junction-Current Model for Advanced MOSFET Technologies

    Ryosuke INAGAKI  Norio SADACHIKA  Mitiko MIURA-MATTAUSCH  Yasuaki INOUE  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    983-989

    A PN junction current model for advanced MOSFETs is proposed and implemented into HiSIM2, a complete surface-potential-based MOSFET model. The model includes forward diode currents and reverse diode currents, and requires a total of 13 model parameters covering all bias conditions. Model simulation results reproduce measurements for different device geometries over a wide range of bias and temperature values.

  • High-Frequency Analyses for Scattered Fields by a Cylindrically Curved Conducting Surface

    Keiji GOTO  Toru KAWANO  Toyohiko ISHIHARA  

     
    PAPER

      Vol:
    E92-C No:1
      Page(s):
    25-32

    We study the high-frequency asymptotic analysis methods for the scattered fields by a cylindrically curved conducting surface excited by the incident wave on the curved surface from the convex side. We first derive the novel hybrid ray-mode solution for the scattered fields near the concave surface by solving a canonical problem formulated under the assumption that the cylindrically curved conducting surface possesses only one edge. Then by applying the ray tracing technique and the idea of Keller's GTD (Geometrical Theory of Diffraction), the solutions derived for the canonical problem are extended to account for the problem of the radiation from and the scattering by the other edge of the cylindrically curved surface. We confirm the validity of the novel asymptotic representations proposed in the present study by comparing both with the numerical results obtained from the method of moment and the experimental results performed in the anechoic chamber.

  • Estimation of Reflection Coefficient and Surface Impedance from Absolute Values of the Near Field with Periodic Change

    Michinari SHIMODA  Masazumi MIYOSHI  Kazunori MATSUO  Yoshitada IYAMA  

     
    PAPER

      Vol:
    E92-C No:1
      Page(s):
    92-101

    An inverse scattering problem of estimating the reflection coefficient and the surface impedance from two sets of absolute values of the near field with periodic change is investigated. The problem is formulated in terms of a nonlinear simultaneous equations which is derived from the relation between the two sets of absolute values and the field defined by a finite summation of the modal functions by applying the Fourier analysis. The reflection coefficient is estimated by solving the equations by Newton's method through the successive algorithm with the increment of the number of truncation in the summation one after another. Numerical examples are given and the accuracy of the estimation is discussed.

  • Low Grazing Scattering from a Surface with a Finite Periodic Array of Rectangular Grooves

    Junichi NAKAYAMA  Yasuhiko TAMURA  Kiyoshi TSUTSUMI  

     
    LETTER-Electromagnetic Theory

      Vol:
    E92-C No:1
      Page(s):
    166-168

    This paper deals with the scattering of a transverse magnetic (TM) plane wave from a perfectly conductive surface with a finite periodic array of rectangular grooves. By use of the method in a previous paper [IEICE TRANS. ELECTRON. VOL.E90-C, no.4, pp.903-906, APRIL 2007], the total scattering cross section is numerically calculated for several different numbers of grooves at a low grazing angle of incidence. It is newly found that, when the corrugation width becomes thousands times of wavelength, the total scattering cross section slightly depends on the groove depth and the period, and becomes almost proportional to square root of the corrugation width with a small correction.

  • PO with Modified Surface-Normal Vectors for RCS Calculation of Scatterers with Edges and Wedges

    Nobutaka OMAKI  Tetsu SHIJO  Makoto ANDO  

     
    PAPER

      Vol:
    E92-C No:1
      Page(s):
    33-39

    We have proposed a unique and simple modification to the definition of surface-normal vectors in Physical optics (PO). The modified surface-normal vectors are so defined as that the reflection law is satisfied at every point on the surface. The PO with currents defined by this new surface-normal vector has the enhanced accuracy for the edged scatterers to the level of Geometrical Theory of Diffraction (GTD), though it dispenses with the knowledge of high frequency asymptotic techniques. In this paper, firstly, the remarkable simplicity and the high accuracy of the modified PO as applied to the analysis of Radar Cross Section (RCS) is demonstrated for 2 dimensional problems. Noteworthy is that the scattering not only from edge but also from wedge is accurately predicted. This fringe advantage is confirmed asymptotically by comparing the edge and wedge diffraction coefficients of GTD. Finally, the applicability for three dimensional cube is also demonstrated by comparison with experimental data.

  • Electrocatalytic Oxidation Properties of Ascorbic Acid at Poly(3,4-ethylenedioxythiophene) Films Studied by Electrochemical-Surface Plasmon Resonance Spectroscopy

    Akira BABA  Yohsuke SANO  Yasuo OHDAIRA  Kazunari SHINBO  Keizo KATO  Futao KANEKO  

     
    LETTER-Materials & Devices

      Vol:
    E91-C No:12
      Page(s):
    1881-1882

    In this report, we demonstrate electrocatalytic oxidation properties of ascorbic acid at poly(3,4-ethylenedioxythiophene) (PEDOT) thin films in view of their potential application for bio-sensing devices. PEDOT thin films were deposited on gold thin films by electropolymerization of EDOT monomer in acetonitrile solvent. In-situ electrochemical-surface plasmon resonance spectroscopy (EC-SPR) was used to detect both electrochemical and optical signals upon an injection of ascorbic acid.

  • Active Frequency Selective Surfaces Using Incorporated PIN Diodes

    Kihun CHANG  Sang il KWAK  Young Joong YOON  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:12
      Page(s):
    1917-1922

    In this paper, active frequency selective surfaces (FSS) having a squared aperture with a metal plate loading are described. Active FSS elements using switched PIN diodes are discussed with an equivalent circuit model. A unit cell consists of a square aperture element with metal island loading and one PIN diode placed at the upper gap, considering the vertical polarization. The electromagnetic properties of the active FSS structure are changed by applying dc bias to the substrate, and they can be estimated by the equivalent circuit model of the FSS structure and PIN diode. This active FSS design enables transmission to be switched on or off at 2.3 GHz, providing high transmission when the diodes are in an off state and high isolation when the diodes are on. The equivalent circuit model in the structure is investigated by analyzing transmission and reflection spectra. Measurements on active FSS are compared with numerical calculations. The experimentally observed frequency responses are also scrutinized.

  • Surface Plasmon Excitation and Emission Light Property for Otto/Kretschmann Configuration with MEH-PPV Film

    Megumi HAFUKA  Masahiro MINAGAWA  Yasuo OHDAIRA  Akira BABA  Kazunari SHINBO  Keizo KATO  Futao KANEKO  

     
    LETTER-Materials & Devices

      Vol:
    E91-C No:12
      Page(s):
    1883-1884

    Attenuated total reflection (ATR) property utilizing surface plasmon (SP) excitation was investigated for BK-7 prism/MgF2/Ag film/fluorescent organic dye film structure. In the structure, it is expected that SPs are excited at MgF2/Ag and Ag/dye film interfaces by Otto and Kretschmann configurations, respectively. In the experimental ATR curve, reflection dips for the SP excitations at the interfaces could be detected. Furthermore, SP emission lights were observed by irradiation of Ar ion laser beam from the dye film side. The SP emission light curve with two peaks was observed and it was also considered that the peaks corresponded to the SP excitation of Otto and Kretschmann configurations. The SP emission light spectra indicated the excited fluorescent dyes induced the SP emission lights. Intense emission light of Otto configuration was observed in this sample.

  • Surface Conduction Electron Emission from ZnO Film

    Shengli WU  Chengli WANG  Jintao ZHANG  Wenbo HU  Chunliang LIU  

     
    LETTER

      Vol:
    E91-C No:10
      Page(s):
    1554-1556

    The properties of the surface-conduction electron-emitter display (SED) are mainly decided by the surface-conduction electron emitters (SCE), which are normally made from the expensive metal Pd. In this study, we propose to use metal Zn instead of Pd as the emitter material. Both the device electrode and ZnO thin film are deposited by a sputter, and the electron emitters (SCE) are formed by the electro-forming process. The electron emission characteristic is obtained and the luminescence is observed.

141-160hit(415hit)