The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SiON(4624hit)

3341-3360hit(4624hit)

  • A Fault-Tolerant Deadlock-Free Routing Algorithm in a Meshed Network

    Deogkyoo LEE  Daekeun MOON  Ilgu YUN  Hagbae KIM  

     
    PAPER-Fault Tolerance

      Vol:
    E85-D No:4
      Page(s):
    722-726

    Since components faults occurring at arbitrary places (primarily on the links) affect seriously network performance and reliability, the multicomputers operating in harsh environments should be designed to guarantee normal network-missions in presence of those faults. One solution to the end is a fault-tolerant routing scheme, which enables messages to safely reach their destinations avoiding failed links when transmission of messages is blocked by certain faults. In the paper, we develop a fault-tolerant routing algorithm with deadlock freedom in an n-dimensional meshed network, and validate its efficiency and effectiveness through proper simulations. The aspects of fault-tolerance is adopted by appending partial-adaptiveness and detouring to the e-cube algorithm, while using a wormhole routing for the backbone routing method. The phenomenon of deadlock incurred due to its adaptiveness is eliminated by classifying a physical channel into a couple of virtual channels.

  • Finding Method of Radiated Emission Sources with Arbitrary Directional Current Components Utilizing CISPR Measurement System

    Yasuhiro ISHIDA  Kouji YAMASHITA  Masamitsu TOKUDA  

     
    PAPER-Wireless Communication Technology

      Vol:
    E85-B No:4
      Page(s):
    723-731

    The possibility of applying a recently proposed emission source location method, which is based on CISPR measurements, to sources with arbitrary directional current components is studied. We propose a new finding algorithm in which the horizontal and the vertical current components are estimated at the same time by taking into account the contribution of horizontal current components when calculating the vertical electric field. As a result of experimental verification by using two spherical dipole antennas as ideal emission sources, estimated values show good agreement with the original ones in the frequency range from 300 MHz to 1 GHz, where the position estimation deviation d was less than 0.15 m, the amplitude estimation deviation j was less than 2.1 dB, and furthermore the angle of current direction could be estimated. Consequently, this method with the presented new algorithm can be applied to find radiated emission sources even when the current components point to arbitrary directions.

  • PDL Suppression on Long-Period Fiber Gratings by Azimuthally Isotropic Exposure

    Yuu ISHII  Kensuke SHIMA  Satoshi OKUDE  Kenji NISHIDE  Akira WADA  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    934-939

    We investigate a method to suppress the polarization-dependent loss (PDL) of long-period fiber gratings (LPFGs). We study the origins of the PDL and propose an azimuthally isotropic UV exposure to suppress the UV-induced birefringence and to realize low-PDL LPFGs. By using this technique and a low birefringent fiber together, the PDL of LPFGs can be reduced to a sufficiently low level required in high performance communication systems. Moreover, the validity of our theoretical modeling is confirmed by the experimental results.

  • High Performance Dispersion-Flattened Hybrid Optical Transmission Lines for Ultra-Large Capacity Transoceanic Systems

    Masao TSUKITANI  Eiji YANADA  Takatoshi KATO  Eisuke SASAOKA  Yoshinori MAKIO  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    903-909

    This paper describes design optimization and performances of hybrid optical transmission lines consisting of effective-area-enlarged pure silica core fiber and dispersion compensating fiber. As a result of the design optimization, considering low nonlinearity and good bending characteristic, the developed fibers exhibit a span average loss of 0.208 dB/km, a span average dispersion slope of 0.02 ps/nm2/km and low nonlinearity with an equivalent effective area of 60 µm2. Further optimization of the relationship among the nonlinearity, the dispersion slope and the bending characteristic enables perfectly dispersion-flattened hybrid optical transmission lines exhibiting a low transmission loss of 0.211 dB/km, low nonlinearity with an equivalent effective area of 60 µm2 and small dispersion deviation of 0.03 ps/nm/km in a wavelength band wider than 40 nm.

  • SCTAC: A Novel MAC Protocol for a MultiCode-CDMA Network

    Peng-Yong KONG  Kee-Chaing CHUA  Brahim BENSAOU  

     
    PAPER-Wireless Communication Technology

      Vol:
    E85-B No:4
      Page(s):
    732-747

    Existing MultiCode-CDMA MAC protocols perform only single dimensional access control either in the code or time domain. In this paper, we propose a MAC protocol, called SCTAC which can perform simultaneous code-time access control to achieve better system utilization. Also, SCTAC intends to provide service differentiation among different traffic classes. In order to simultaneously control access in both the code and time domain, SCTAC decouples the function of transmission ordering from the function of packing the scheduled transmissions in the resource space. As such, different transmission scheduling algorithms can be adopted without altering the MAC protocol. A water filling approach is used for efficient transmission packing where each of the scheduled transmissions is treated as a rectangular capsule with an arbitrary size and the resource space is viewed as a water container. In addition, SCTAC uses different request sending probabilities with an improved probability update algorithm to achieve service differentiation. Simulation results indicate that SCTAC is capable of providing different performances to different traffic classes. The results also confirm that SCTAC can achieve higher throughput compared to single dimensional access control protocols. Therefore, SCTAC is a better MAC protocol.

  • Development and Future Prospect of Optical Fiber Technologies

    Naoya UCHIDA  

     
    INVITED PAPER

      Vol:
    E85-C No:4
      Page(s):
    868-880

    This paper presents a historical review of fiber technologies from the 1970s till now, focused on design, transmission characteristics, and reliability assurance of silica optical fibers. Discussion is made by dividing the period into two phases; the first phase closing nearly at the end of the 1980s and the second one starting at the same time. As for the first phase, we present designs of graded-index multimode fiber and single-mode fiber, and development of dispersion shifted fiber. Mechanical reliability assurance and loss increase phenomena due to hydrogen are also described. Development of an optical fiber amplifier triggered the start of the second phase. Due to the introduction of WDM transmission systems as well as demand on high bit-rate transmission, fiber dispersion and nonlinearity have become indispensable factors to be taken into consideration for system design and performance evaluation. We discuss novel non-zero dispersion shifted fibers and dispersion compensating fibers, developed to meet the requirements for long distance and high bit-rate WDM transmission systems. Finally, discussions are made on the future research and development items, which are necessary to realize anticipating photonic networks.

  • How to Quantify Multipath Separation

    Martin STEINBAUER  Huseyin OZCELIK  Helmut HOFSTETTER  Christoph F. MECKLENBRAUKER  Ernst BONEK  

     
    PAPER-Multipath

      Vol:
    E85-C No:3
      Page(s):
    552-557

    This contribution discusses which information can be derived from estimated directions of arrival (DOAs) and directions of departure (DODs) from a multiple-input multiple-output (MIMO) radio system, and establishes two new parameters describing the multipath spread at both link ends. We find that the multipath component separation, MCS, combines delay, (double-) angular and Doppler dispersion, as appropriate. MCS provides a system-independent radio characterization of propagation environments and aids in selecting optimum positions for smart-antenna deployment. Evaluation of double-directional measurements (antenna arrays at both link ends) in indoor environments show the usefulness and the limits of the multipath component separation concept.

  • An Embedded Zerotree Wavelet Video Coding Algorithm with Reduced Memory Bandwidth

    Roberto Y. OMAKI  Gen FUJITA  Takao ONOYE  Isao SHIRAKAWA  

     
    PAPER-Image

      Vol:
    E85-A No:3
      Page(s):
    703-713

    A wavelet based algorithm for scalable video compression is described, with the main focus put on memory bandwidth reduction and efficient VLSI implementation. The proposed algorithm adopts a modified 2-D subband decomposition scheme in conjunction with a partial zerotree search for efficient Embedded Zerotree Wavelet coding. The experiment with the performance of the proposed algorithm in comparison with that of conventional DWT, MPEG-2, and JPEG demonstrates that the image quality of the proposed algorithm is consistently superior to that of JPEG, and our scheme can even outperform MPEG-2 in some cases, although it does not exploit the inter-frame redundancy. In spite of the performance inferiority to the conventional DWT, the proposed algorithm attains significant reduction of DWT memory requirements, enhancing a reasonable balance between implementation cost and image quality.

  • Haar Wavelet Scale Domain Method for Solving the Transient Response of Dispersive Transmission Lines with Nonlinear Loads

    I-Ting CHIANG  Shyh-Kang JENG  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E85-B No:3
      Page(s):
    641-651

    A numerical technique based on Haar wavelets is used for solving transient problems of transmission lines. The approach of our method is to convert the original coupled partial differential equations, the transmission line equations or the telegrapher equations, to a system of ordinary matrix differential equations via Haar wavelets. Then, transient problems of transmission lines can be solved by matrix operations. Numerical examples of homogeneous and dispersive lines, along with both linear and nonlinear loads are verified. In addition, non-sinusoidal signals such as the unit step function and the rectangular pulse for digital applications are included to demonstrate the use of this efficient, easy-to-handle, stable, and versatile method.

  • MPEG Bit Rate and Format Conversions for Heterogeneous Network/Storage Applications

    Yasuyuki NAKAJIMA  Masaru SUGANO  

     
    PAPER-Signal Processing

      Vol:
    E85-C No:3
      Page(s):
    492-504

    Scalabilities of bit rate and coding format in coded multimedia contents have become very important for the efficient use of network bandwidth and storage capacity with the recent availability of a wide variety of bandwidth and storage media. However, the conventional approach uses decompression and recompression processes to realize the above scalabilities, which require very expensive computations. In addition, a very large cache space is required for storing the decoded audio-video data. This paper describes three fast scalability methods for MPEG audio and video data, MPEG audio/video bit rate conversion and MPEG format conversion, in order to address these problems. As for the first scalability, MPEG audio coding bit rate conversions, we describe subband domain conversion using bandwidth limitation, requantization and a requantization reflecting phychoacoustic model. Four types of MPEG video bit rate conversion are described that use bandwidth limitation, out-loop requantization, in-loop requantization, and hybrid requantization. As for the format conversion, the fast baseband domain format conversion is performed using coding information such as motion vectors and coding types extracted from input coded video. The experimental results of several comparisons with the above scalabilities and conventional transcoding methods are also shown.

  • Optimum Remote Pre-Amplifier Parameter Design Considering Cable Repair

    Norio OHKAWA  

     
    LETTER-Fiber-Optic Transmission

      Vol:
    E85-B No:3
      Page(s):
    655-657

    A design method is proposed that yields the optimum remote pre-amplifier (RPRA) parameters considering cable repair, the results of include increased cable loss and insertion position uncertainty. The optimum RPRA location is given by the intersection point of optical SNR (OSNR) vs. RPRA location curves in two cases; the total cable repair loss is assumed to be inserted at the transmitter end and at the receiver end. This RPRA parameter gives the maximum OSNR in the worst loss insertion case by cable repair.

  • The Width-Conversion of an Optical Signal by Using an Erbium-Doped Fiber and an Asymmetric Optical Circuit

    Ki-Hwan PARK  Wataru CHUJO  

     
    LETTER-Fiber-Optic Transmission

      Vol:
    E85-B No:3
      Page(s):
    652-654

    We describe the width conversion of an optical signal by using an erbium-doped fiber and an asymmetric optical circuit. The width of an optical signal was measured to be a respective 350 nsec and 200 nsec for a 70 m and 40 m fiber (Lf). The width of the pumping pulse was 5 nsec and the length of erbium-doped fiber was 3 m. We also extended the optical signals to a respective 300 nsec and 150 nsec wide at a pumping pulse 10 nsec by inserting a 60 m and a 30 m fiber (Lf) inside a circuit.

  • Iterative Demodulation and Channel Estimation of Orthogonal Signaling Formats in Asynchronous DS-CDMA Systems

    Erik G. STROM  Scott L. MILLER  

     
    PAPER-Digital Transmission

      Vol:
    E85-C No:3
      Page(s):
    442-451

    Iterative schemes for demodulating M-ary orthogonal signaling formats in direct-sequence code-division multiple access (DS-CDMA) systems are proposed and compared with the standard noncoherent matched filter receiver. Interference cancellation, i.e., (approximative) removal of the multiple access interference (MAI) by means of subtraction is studied. The considered system is similar to the uplink (reverse link) of an IS-95 system. Hence, the received signals from the concurrent users are asynchronous, and no pilot signals are available for channel estimation. A decision-directed algorithm is proposed for estimating the time-varying complex channel gains of a multipath channel. The receivers are evaluated on Rayleigh-fading channels and are shown to provide large capacity gains compared with the conventional receiver.

  • A High-Throughput VLSI Architecture for LZFG Data Compression

    Jin-Ming CHEN  Che-Ho WEI  

     
    PAPER-VLSI Systems

      Vol:
    E85-D No:3
      Page(s):
    497-509

    This paper presents a high-throughput VLSI architecture for LZFG data compression and decompression. To reduce the hardware cost and maintain both of the interior node and the leaf node numbering systems, we modify the original LZFG data structure. Compared to the original LZFG tree, the number of characters in our modified LZFG data structure must be greater than one to establish one new interior node down the root node into the new node. Meanwhile, this architecture employs a series of encoding cells with content addressable memory (CAM) to search the longest match and maintain the LZFG data tree during the encoding and decoding processes. By using the parallel design, the compressor and decompressor can keep a constant high bit rate to encode and decode one character per clock cycle, that is, it is directly proportional to the operating clock rate, but independent of the sizes of the word dictionary and the input file. By using 0.25 µm CMOS silicon technology, the operating clock rate can be as high as 85 MHz. Some untargeted encoding cells will be disabled to reduce the power consumption during the comparison operation. Therefore, this architecture can be easily applied in the high-speed real-time communication and data storage systems.

  • A 600-700 GHz Resonant Distributed Junction for a Fixed-Tuned Waveguide Receiver

    Teruhiko MATSUNAGA  Cheuk-yu Edward TONG  Raymond BLUNDELL  Takashi NOGUCHI  

     
    PAPER-Mixers and Detectors

      Vol:
    E85-C No:3
      Page(s):
    738-741

    The non-linear quasiparticle tunnel current flowing in a distributed superconductor-insulator-superconductor (SIS) transmission line resonator has been exploited in a low-noise heterodyne fixed-tuned waveguide receiver in the 600-700 GHz band. The mixer employs two half-wave or full-wave distributed SIS long junctions connected in series. These devices have been fabricated with optical lithography. At 654 GHz, a Y-factor of 1.79 has been recorded, corresponding to a double-side-band (DSB) receiver noise temperature of 198 K at an IF of 3 GHz.

  • Adaptive Transmission Scheme for Web Prefetching in Wireless Environment

    Ryoichi SHINKUMA  Minoru OKADA  Shozo KOMAKI  

     
    PAPER-Signal Processing

      Vol:
    E85-C No:3
      Page(s):
    485-491

    This paper proposes an adaptive transmission scheme for web prefetching in wireless communication systems. The proposed adaptive transmission scheme controls the modulation format and the error control scheme according to the access probability of the web document being transmitted. In the proposed system, the actually requested documents and the documents which have high access probability are transmitted with a reliable transmission format, while the pages whose access probabilities are lower than a certain threshold are transmitted with a bandwidth efficient transmission format. The computer simulation results show that the proposed scheme drastically improves the latency performance.

  • An Efficient Heuristic Search Method for Maximum Likelihood Decoding of Linear Block Codes Using Dual Codes

    Tomotsugu OKADA  Manabu KOBAYASHI  Shigeichi HIRASAWA  

     
    PAPER-Coding Theory

      Vol:
    E85-A No:2
      Page(s):
    485-489

    Y. S. Han et al. have proposed an efficient maximum likelihood decoding (MLD) algorithm using A* algorithm which is the graph search method. In this paper, we propose a new MLD algorithm for linear block codes. The MLD algorithm proposed in this paper improves that given by Han et al. utilizing codewords of dual codes. This scheme reduces the number of generated codewords in the MLD algorithm. We show that the complexity of the proposed decoding algorithm is reduced compared to that given by Han et al. without increasing the probability of decoding error.

  • An Efficient Laplacian-Model Based Dequantization for Uniformly Quantized DCT Coefficients

    Kwang-Deok SEO  Kook-Yeol YOO  Jae-Kyoon KIM  

     
    LETTER-Image Processing, Image Pattern Recognition

      Vol:
    E85-D No:2
      Page(s):
    421-425

    Quantization is an essential step which leads to compression in discrete cosine transform (DCT) domain. In this paper, we show how a statistically non-optimal uniform quantizer can be improved by employing an efficient reconstruction method. For this purpose, we estimate the probability distribution function (PDF) of original DCT coefficients in a decoder. By applying the estimated PDF into the reconstruction process, the dequantization distortion can be reduced. The proposed method can be used practically in any applications where uniform quantizers are used. In particular, it can be used for the quantization scheme of the JPEG and MPEG coding standards.

  • Development of 40 Gbit/s Transceiver Using a Novel OTDM MUX Module, and Stable Transmission with Carrier-Suppressed RZ Format

    Yoshiharu FUJISAKU  Masatoshi KAGAWA  Toshio NAKAMURA  Hitoshi MURAI  Hiromi T. YAMADA  Shigeru TAKASAKI  Kozo FUJII  

     
    PAPER

      Vol:
    E85-B No:2
      Page(s):
    416-422

    40 Gbit/s optical transceiver using a novel OTDM MUX module has been developed. OTDM (Optical-Time-Division-Multiplexing) MUX module, the core component of the transmitter, consisted of a optical splitter, two electro-absorption (EA) modulators and a combiner in a sealed small package. As the split optical paths run through the "air" in the module, greatly stable optical phase relation between bit-interleaved pulses could be maintained. With the OTDM MUX module, the selection between conventional Return-to-Zero (conventional-RZ) format and carrier-suppressed RZ (CS-RZ) format is performed by slightly changing the wavelength of laser-diode. In a receiver, 40 Gbit/s optical data train is optically demultiplexed to 10 Gbit/s optical train, before detected by the O/E receiver for 10 Gbit/s RZ format. Back-to-back MUX-DEMUX evaluations of the transceiver exhibited good sensitivities of under -30 dBm measured at 40 Gbit/s optical input to achieve the bit-error-rate (BER) of 10-9. Another unique feature of the transceiver system was a spectrum switch capability. The stable RZ and CS-RZ multiplexing operation was confirmed in the experiment. Once we adjust the 40 Gbit/s optical signal to CS-RZ format, the optical spectrum would maintain its CS spectrum shape for a long time to the benefit of the stable long transmission characteristics. In the recirculating loop experiment employing the OTDM MUX transceiver, the larger power margin was successfully observed with CS-RZ format than with conventional-RZ format, indicating that proper encoding of conventional-RZ and CS-RZ was realized with this prototype transceiver. In the case of CS-RZ format, the error free (BER < 10-9) transmission over 720 km was achieved with the long repeater amplifier span of 120 km.

  • Analysis and Experiment on Soliton-Based WDM Transmission Employing Initial Phase Alternation with OTDM Techniques

    Hitoshi MURAI  Hiromi T. YAMADA  Kozo FUJII  

     
    PAPER

      Vol:
    E85-B No:2
      Page(s):
    438-445

    The initial phase alternation of RZ pulses having duty cycle beyond 50% in dispersion-managed-link is found to help stabilize DM solitons transmissions. The stable soliton propagation of such wide RZ pulses should ease the difficulties designing soliton-based DWDM systems due to less spectral occupancy/channel. For the proof of concept, 40 Gbit/s WDM transmissions are numerically investigated and the initial phase alternation improved the transmission distance by the factor of 2 in the soliton-soliton interaction limited regime. The advantage of this concept has also been verified by conducting 40 Gbit/s single and 8 channels WDM transmission experiments using OTDM techniques with initial phase alternation.

3341-3360hit(4624hit)