The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SiON(4624hit)

3381-3400hit(4624hit)

  • Call Admission Control Using a Constraint on Total Composite Received Power in DS-CDMA Systems with Multi-Class Traffic

    Min Kyu PARK  Seong Keun OH  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:1
      Page(s):
    336-339

    We propose a call admission control (CAC) scheme for the reverse link of direct sequence-code division multiple access (DS-CDMA) systems with multi-class traffic, in which the admissibility of the set of requested channels is decided by checking the outage probability of the total composite power at a cell-site receiver. The reverse link capacities under various traffic conditions are evaluated. From numerical results, we see that the proposed scheme can utilize a given radio resource more effectively as compared with the existing scheme using constraints on the individual power levels.

  • Fiber Tract Following in the Human Brain Using DT-MRI Data

    Peter J. BASSER  Sinisa PAJEVIC  Carlo PIERPAOLI  Akram ALDROUBI  

     
    INVITED PAPER

      Vol:
    E85-D No:1
      Page(s):
    15-21

    In Vivo Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) can now be used to elucidate and investigate major nerve pathways in the brain. Nerve pathways are constructed by a) calculating a continuous diffusion tensor field from the discrete, noisy, measured DT-MRI data and then b) solving an equation describing the evolution of a fiber tract, in which the local direction vector of the trajectory is identified with the direction of maximum apparent diffusivity. This approach has been validated previously using synthesized, noisy DT-MRI data. Presently, it is possible to reconstruct large white matter structures in the brain, such as the corpus callosum and the pyramidal tracts. Several problems, however, still affect the method's reliability. Its accuracy degrades where the fiber-tract directional distribution is non-uniform, and background noise in diffusion weighted MRIs can cause computed trajectories to jump to different tracts. Nonetheless, this method can provide quantitative information with which to visualize and study connectivity and continuity of neural pathways in the central and peripheral nervous systems in vivo, and holds promise for elucidating architectural features in other fibrous tissues and ordered media.

  • Region-Adaptive Image Restoration Using Wavelet Denoising Technique

    Jianyin LU  Yasuo YOSHIDA  

     
    LETTER-Image Processing, Image Pattern Recognition

      Vol:
    E85-D No:1
      Page(s):
    286-290

    Space-variant approaches subject to local image characteristics are useful in practical image restoration because many natural images are nonstationary. Motivated by the success of denoising approaches in the wavelet domain, we propose a region-adaptive restoration approach which adopts a wavelet denoising technique in flat regions after an under-regularized constrained least squares restoration. Experimental results verify that this approach not only improves image quality in mean square error but also contributes to ringing reduction.

  • On a Network Dimensioning Approach for the Internet

    Masayuki MURATA  

     
    INVITED PAPER

      Vol:
    E85-B No:1
      Page(s):
    3-13

    In this paper, a network dimensioning approach suitable to the Internet is discussed. Differently from the traditional telephone networks, it is difficult to guarantee QoS for end-users even in a statistically sense due to an essential nature of an end-to-end communication architecture in the Internet. We should therefore adopt another approach, based on the traffic measurement. In the approach, the traffic measurement is performed for monitoring the end-to-end QoS. Then, the network adaptively controls the link capacities to meet the user's QoS demands. For this purpose, the underlying network should support such a capability that the link capacities can be flexibly reused. With the WDM network as an underlying network, an example scenario for network provisioning is finally illustrated.

  • Proposal of a Price-Based Inter-AS Policy Routing to Improve ASes' Profits

    Nagao OGINO  Masatoshi SUZUKI  

     
    PAPER

      Vol:
    E85-B No:1
      Page(s):
    137-146

    At present, the global Internet consists of many ASes. Each AS pays a pre-determined connection fee to another AS for connecting its network with that AS's network. The connection fee type charging may be rational in case of transferring the best-effort type traffic. However, usage charging is necessary to transferring the resource guaranteed type traffic such as the Intserv traffic and the Diffserv traffic. In this case, each AS pays a per-flow fee to another AS every time it routes a flow into another AS. The per-flow fee paid by each AS becomes a part of the cost for that AS. Thus, each AS needs to select a route with the lowest price to improve its own profit. In this paper, we call such an inter-AS routing scheme a price-based inter-AS routing scheme. When each AS has a request to route an inter-AS flow, it can select an inter-AS route with the lowest price to improve its own profit by this routing scheme. Cost-dependent pricing scheme is suitable for the price-based inter-AS routing scheme because it can reduce frequency of price information exchange between ASes. However, in the cost-dependent pricing scheme, profit in each AS depends on the distribution of path costs in that AS. Generally, ASes with narrow ranges of path costs cannot obtain sufficient profits compared to ASes with wide ranges of path costs. Thus, we propose a routing policy for ASes with narrow ranges of path costs to improve their profits efficiently and evaluate its effect using a simple routing model.

  • 2D Photonic Crystal Surface-Emitting Laser Using Triangular-Lattice Structure

    Susumu NODA  Masahiro IMADA  

     
    INVITED PAPER

      Vol:
    E85-C No:1
      Page(s):
    45-51

    A 2D photonic crystal surface-emitting laser using a triangular lattice is developed, and current-injected lasing oscillation is demonstrated. From consideration of the Bragg diffraction condition in the 2D triangular-lattice structure, it is shown that the 2D coupling phenomenon occurs in the structure. As a result of the 2D periodicity of the structure, the longitudinal mode and lateral mode can be controlled, and stable single-mode oscillation is possible over a large 2D area. The lasing mode of the structure is analyzed by calculating the photonic band diagram by the 2D plane-wave expansion method, and we show that four band edges at which the lasing oscillation can occur exist at the Γ point. Current-injected lasing oscillation is successfully demonstrated at room temperature under pulsed conditions. The threshold current density is 3.2 kA/cm2 and the lasing wavelength is 1.285 µm. From the near-field and far-field patterns, it is shown that large-area 2D (diameter 480 µm) lasing oscillation occurs in the device and the divergence angle is very narrow (less than 1.8). We also demonstrate the correspondence between the measured lasing wavelengths and calculated band diagram by comparing the polarization characteristics with the calculated distribution of the electromagnetic field. The results indicate that 2D coherent lasing oscillation occurs due to the multi-directional coupling effect in the 2D photonic crystal. Finally, we show that the polarization patterns of the lasers can be controlled by introducing artificial lattice defects from the theoretical calculation.

  • Semantically Secure McEliece Public-Key Cryptosystem

    Kazukuni KOBARA  Hideki IMAI  

     
    PAPER

      Vol:
    E85-A No:1
      Page(s):
    74-83

    Almost all of the current public-key cryptosystems (PKCs) are based on number theory, such as the integer factoring problem and the discrete logarithm problem (which will be solved in polynomial-time after the emergence of quantum computers). While the McEliece PKC is based on another theory, i.e. coding theory, it is vulnerable against several practical attacks. In this paper, we summarize currently known attacks to the McEliece PKC, and then point out that, without any decryption oracles or any partial knowledge on the plaintext of the challenge ciphertext, no polynomial-time algorithm is known for inverting the McEliece PKC whose parameters are carefully chosen. Under the assumption that this inverting problem is hard, we propose a slightly modified version of McEliece PKC that can be proven, in the random oracle model, to be semantically secure against adaptive chosen-ciphertext attacks. Our conversion can achieve the reduction of the redundant data down to 1/3-1/4 compared with the generic conversions for practical parameters.

  • A Fast Full Search Motion Estimation Algorithm Using Sequential Rejection of Candidates from Multilevel Decision Boundary

    Jong Nam KIM  ByungHa AHN  

     
    LETTER-Multimedia Systems

      Vol:
    E85-B No:1
      Page(s):
    355-358

    We propose a new and fast full search (FS) motion estimation algorithm for video coding. The computational reduction comes from sequential rejection of impossible candidates with derived formula and subblock norms. Our algorithm reduces more the computations than the recent fast full search (FS) motion estimation algorithms.

  • Recovering and Analyzing 3-D Motion of Team Sports Employing Uncalibrated Video Cameras

    Joo Kooi TAN  Seiji ISHIKAWA  

     
    LETTER

      Vol:
    E84-D No:12
      Page(s):
    1728-1732

    Techniques for human-motion recovery are applicable to a variety of areas, such as sports, dancing, virtual reality, and video-game production. The people who work in this area focus their attention on recovering information on the motion of individuals rather than groups of people. It is important to demonstrate the possibility of recovering descriptions of the 3-D motion in team sports, since such information is able to provide us with a variety of information on the relations among players. This paper presents a new experimental result on 3-D motion recovery from a team sport. The result was obtained by a non-rigid shape recovery technique based on images from uncalibrated cameras. The technique was applied to recovering the 3-D motion of the players in a mini-basketball game which was played in a gymnasium. Some attention is focused on the analysis of the players' motion. Satisfactory results were obtained.

  • Real-Time Camera Parameter Estimation for 3-D Annotation on a Wearable Vision System

    Takashi OKUMA  Takeshi KURATA  Katsuhiko SAKAUE  

     
    PAPER

      Vol:
    E84-D No:12
      Page(s):
    1668-1675

    In this paper, we describe a method for estimating external camera parameters in real time. We investigated the effectiveness of this method for annotating real scenes with 3-D virtual objects on a wearable computer. The proposed method enables determining known natural feature points of objects through multiplied color histogram matching and template matching. This external-camera-parameter calculation method consists of three algorithms for PnP problems, and it uses each algorithm selectively. We implemented an experimental system based on our method on a wearable vision system. This experimental system can annotate real objects with 3D virtual objects by using the proposed method. The system was implemented in order to enable effective annotation in a mixed-reality environment on a wearable computing system. The system consists of an ultra small CCD camera set at the user's eye, an ultra small display, and a computer. This computer uses the proposed method to determine the camera parameters. It then renders virtual objects based on the camera parameters and synthesizes images on a display. The system works at 10 frames per second.

  • Proposal of an Adaptive Vision-Based Interactional Intention Inference System in Human/Robot Coexistence

    Minh Anh Thi HO  Yoji YAMADA  Takayuki SAKAI  Tetsuya MORIZONO  Yoji UMETANI  

     
    PAPER

      Vol:
    E84-D No:12
      Page(s):
    1596-1602

    The paper proposes a vision-based system for adaptively inferring the interactional intention of a person coming close to a robot, which plays an important role in the succeeding stage of human/robot cooperative handling of works/tools in production lines. Here, interactional intention is ranged in the meaning of the intention to interact/operate with the robot, which is proposed to be estimated by the human head moving path during an incipient period of time. To implement this intention inference capability, first, human entrance is detected and is modeled by an ellipse to supply information about the head position. Second, B-spline technique is used to approximate the trajectory with reduced control points in order that the system acquires information about the human motion direction and the curvature of the motion trajectory. Finally, Hidden Markov Models (HMMs) are applied as the adaptive inference engines at the stage of inferring the human interactional intention. The HMM algorithm with a stochastic pattern matching capability is extended to supply whether or not a person has an intention toward the robot at the incipient time. The reestimation process here models the motion behavior of an human worker when he has or doesn't have the intention to operate the robot. Experimental results demonstrate the adaptability of the inference system using the extended HMM algorithm for filtering out motion deviation over the trajectory.

  • 3D Reconstruction Based on Epipolar Geometry

    Makoto KIMURA  Hideo SAITO  

     
    PAPER

      Vol:
    E84-D No:12
      Page(s):
    1690-1697

    Recently, it becomes popular to synthesize new viewpoint images based on some sampled viewpoint images of real scene using technique of computer vision. 3D shape reconstruction in Euclidean space is not necessarily required, but information of dense matching points is basically enough to synthesize new viewpoint images. In this paper, we propose a new method for 3D reconstruction from three cameras based on projective geometry. In the proposed method, three input camera images are rectified based on projective geometry, so that the vertical and horizontal directions can be completely aligned with the epipolar planes between the cameras. This rectification provides Projective Voxel Space (PVS), in which the three axes are aligned with the directions of camera projection. Such alignment simplifies the procedure for projection between the 3D space and the image planes in PVS. Taking this advantage of PVS, silhouettes of the objects are projected into PVS, so that the searching area of matching points can be reduced. The consistency of color value between the images is also evaluated for final determination of the matching point. The finally acquired matching points in the proposed method are described as the surface of the objects in PVS. The acquired surface of the objects in PVS also includes knowledge about occlusion. Finally, images from new viewpoints can be synthesized from the matching points and occlusions. Although the proposed method requires only weak calibration, plausible occlusions are also synthesized in the images. In the experiments, images of virtual viewpoints, which were set among three cameras, are synthesized from three real images.

  • A Random Walk through Eigenspace

    Matthew TURK  

     
    INVITED PAPER

      Vol:
    E84-D No:12
      Page(s):
    1586-1595

    It has been over a decade since the "Eigenfaces" approach to automatic face recognition, and other appearance-based methods, made an impression on the computer vision research community and helped spur interest in vision systems being used to support biometrics and human-computer interface. In this paper I give a personal view of the original motivation for the work, some of the strengths and limitation of the approach, and progress in the years since. Appearance-based approaches to recognition complement feature- or shape-based approaches, and a practical face recognition system should have elements of both. Eigenfaces is not a general approach to recognition, but rather one tool out of many to be applied and evaluated in the appropriate context.

  • Evaluation of the Performance of the Mobile Communications Network Providing Internet Access Service

    Akira MIURA  Toshihiro SUZUKI  Keiko YOSHIHARA  Koji SASADA  Yoko KIKUTA  

     
    PAPER-Mobile Service and Technologies

      Vol:
    E84-B No:12
      Page(s):
    3166-3172

    Internet access via mobile communications networks is growing rapidly; NTT DoCoMo's Internet access service using cellular phones, known as i-mode and started in February 1999, is no exception. The i-mode service enables the user to send e-mail and access Web sites for a variety of information through simple operation of a mobile terminal equipped with a browser. As a result, the traffic to be carried by the PDC (Personal Digital Cellular)-- Packet mobile communication network, which is used to provide the i-mode service, is also increasing rapidly. To meet this growing demand, the switching systems in place are being either increased in capacity or replaced by more powerful ones. To plan this effectively, it is necessary to make an accurate evaluation of the i-mode processing capacity. We have developed a new method of evaluating processing capacity, which is based on the conventional method but takes account of the characteristics specific to the PDC-Packet network. This paper discusses the method of evaluating the processing capacity of switching systems used in the PDC-Packet mobile network.

  • High Sensitivity Radar-Optical Observations of Faint Meteors

    Koji NISHIMURA  Toru SATO  Takuji NAKAMURA  Masayoshi UEDA  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1877-1884

    In order to assess the possible impacts of meteors with spacecraft, which is among major hazard in the space environment, it is essential to establish an accurate statistics of their mass and velocity. We developed a radar-optical combined system for detecting faint meteors consisting of a powerful VHF Doppler radar and an ICCD video camera. The Doppler pulse compression scheme is used to enhance the S/N ratio of the radar echoes with very large Doppler shifts, as well as to determine their range with a resolution of 200 m. A very high sensitivity of more than 14 magnitude and 9 magnitude for radar and optical sensors, respectively, has been obtained. Instantaneous direction of meteor body observed by the radar is determined with the interferometry technique. We examined the optimum way of the receiving antenna arrangements, and also of the signal processing. Its absolute accuracy was confirmed by the optical observations with background stars as a reference. By combining the impinging velocity of meteor bodies derived by the radar with the absolute visual magnitude determined by the video camera simultaneously, the mass of each meteor body was estimated. The developed observation system will be used to create a valuable data base of the mass and velocity information of faint meteors, on which very little is known so far. The data base is expected to play a vital role in our understanding of the space environment needed for designing large space structures.

  • CDMA Transmission Power Control at Mobile Terminals for IP Packet Communications in Fading and Multi-Cell Environments

    Hideki SATOH  Masahiro ISHIBA  Takehiko KOBAYASHI  

     
    PAPER

      Vol:
    E84-A No:12
      Page(s):
    3058-3067

    We previously developed a novel transmission power control method for code-division multiple access (CDMA) wireless systems that is suitable for the transmission control protocol (TCP) and constant bit rate (CBR) connections. It allows each mobile terminal to send packets to arbitrary slots without negotiation or the use of the ALOHA protocol. It results in high bandwidth utilization for TCP connections without the need to modify the TCP protocol or use a snoop agent. In this paper, we improve our previously developed power control method so as to adapt itself to distance variations and instantaneous fluctuations in the received power due to fading. We show that the developed method enables efficient bandwidth utilization compared with the conventional power control technique under various conditions.

  • Review of Viterbi's Model Estimating the Capacity of CDMA Based Mobile Systems

    Holger BOCHE  Enrico JUGL  

     
    PAPER-Wireless Communication Technology

      Vol:
    E84-B No:12
      Page(s):
    3212-3217

    In this paper a different view on Viterbi's method for the estimation of the reverse link capacity of a single cell of CDMA based mobile communications systems is given. Viterbi's approach is well-known and of great importance for the capacity estimation. However, the interpretation of Viterbi's result on the system capacity is not that clear. Thus, we introduce a new approach giving accurate reasons for Viterbi's capacity estimation. When neglecting the noise power, both methods provide nearly the same result. We conclude that Viterbi's finding relates to the average capacity, which is an important statistical parameter. However, we should note that this average capacity will be not available all the time. The improvements discussed in this paper focus on the specification of a certain reliability about the availability of the average capacity.

  • Robust Method for Recovering Sign of Gaussian Curvature from Multiple Shading Images

    Shinji FUKUI  Yuji IWAHORI  Robert J. WOODHAM  Kenji FUNAHASHI  Akira IWATA  

     
    PAPER

      Vol:
    E84-D No:12
      Page(s):
    1633-1641

    This paper proposes a new method to recover the sign of local Gaussian curvature from multiple (more than three) shading images. The information required to recover the sign of Gaussian curvature is obtained by applying Principal Components Analysis (PCA) to the normalized irradiance measurements. The sign of the Gaussian curvature is recovered based on the relative orientation of measurements obtained on a local five point test pattern to those in the 2-D subspace called the eigen plane. Using multiple shading images gives a more accurate and robust result and minimizes the effect of shadows by allowing a larger area of the visible surface to be analyzed compared to methods using only three shading images. Furthermore, it allows the method to be applied to specular surfaces. Since PCA removes linear correlation among images, the method can produce results of high quality even when the light source directions are not widely dispersed.

  • Experiments on Parallel-Type Coherent Multistage Interference Canceller with Iterative Channel Estimation for W-CDMA Mobile Radio

    Yoshihisa KISHIYAMA  Koichi OKAWA  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E84-A No:12
      Page(s):
    3000-3011

    This paper investigates the interference suppression effect from much higher rate dedicated physical channels (DPCHs) of a parallel-type coherent multistage interference canceller (COMSIC) with iterative channel estimation (ICE) by laboratory experiments in the transmit-power-controlled W-CDMA reverse link. The experimental results elucidate that when two interfering DPCHs exist with the spreading factor (SF) of 8 and with the ratio of the target signal energy per bit-to-interference power spectrum density ratio (Eb/I0) of fast transmit power control, ΔEb/I0, of -6 dB (which corresponds to 64 simultaneous DPCHs with SF = 64, i.e., the same symbol rate as the desired DPCH), the implemented COMSIC receiver with ICE exhibits a significant decrease in the required transmit signal energy per bit-to-background noise power spectrum density ratio (Eb/N0) at the average bit error rate (BER) of 10-3 (while the matched filter (MF)-based Rake receiver could not realize the average BER of 10-3 due to severe multiple access interference (MAI)). It is also found that the achieved BER performance at the average BER of 10-3 of the COMSIC receiver with the A/D converter quantization of 8 bits in the laboratory experiments is degraded by approximately 1.0 dB and 4.0 dB compared to the computer simulation results, when ΔEb/I0=-6 dB and -9 dB, respectively, due to the quantization error of the desired signal and path search error for the Rake combiner. Finally, we show that the required transmit Eb/N0 at the average BER of 10-3 of the third-stage COMSIC with ICE is decreased by approximately 0.3 and 0.5 dB compared to that of COMSIC with decision-feedback type channel estimation (DFCE) with and without antenna diversity reception, respectively.

  • Fast Lighting/Rendering Solution for Matching a 2D Image to a Database of 3D Models: "Lightsphere"

    Albert Peter BLICHER  Sbastien ROY  

     
    LETTER

      Vol:
    E84-D No:12
      Page(s):
    1722-1727

    We describe a method for object recognition with 2D image queries to be identified from among a set of 3D models. The pose is known from a previous step. The main target application is face recognition. The 3D models consist of both shape and color texture information, and the 2D queries are color camera images. The kernel of the method consists of a lookup table that associates 3D surface normals with expected image brightness, modulo albedo, for a given query. This lookup table is fast to compute, and is used to render images from the models for a sum of square difference error measure. Using a data set of 42 face models and 1764 (high quality) query images under 7 poses and 6 lighting conditions, we achieve average recognition accuracy of about 83%, with more than 90% in several pose/lighting conditions, using semi-automatically computed poses. The method is extremely fast compared to those that involve finding eigenvectors or solving constrained equation systems.

3381-3400hit(4624hit)