The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SiON(4624hit)

3321-3340hit(4624hit)

  • Performance Analysis of SIR-Based Closed-Loop Power Control with Feedback Errors

    Andrea ABRARDO  Giovanni GIAMBENE  David SENNATI  

     
    PAPER

      Vol:
    E85-B No:5
      Page(s):
    872-881

    This paper deals with a cellular system based on Code Division Multiple Access (CDMA) and investigates the performance of Signal-to-Interference (SIR)-based Closed Loop-Power Control (CLPC) schemes taking into account errors on the feedback channel that conveys the power control command from the base station to the mobile terminals. We have evaluated both the distribution of the received power at the base station and the optimum control step size that minimizes the Control Error (CE) standard deviation, a useful measure of the CLPC performance. The impact of interference variations has been deeply investigated for different mobility scenarios and for different feedback channel error conditions.

  • Novel Algorithms and VLSI Design for Division over GF(2m)

    Chien-Hsing WU  Chien-Ming WU  Ming-Der SHIEH  Yin-Tsung HWANG  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E85-A No:5
      Page(s):
    1129-1139

    In this paper, we present the division algorithm (DA) for the computation of b=c/a over GF(2m) in two aspects. First, we derive a new formulation for the discrete-time Wiener-Hopf equation (DTWHE) Ab = c in GF(2) over any basis. Symmetry of the matrix A is observed on some special bases and a three-step procedure is developed to solve the symmetric DTWHE. Secondly, we extend a variant of Stein's binary algorithm and propose a novel iterative division algorithm EB*. Owing to its structural simplicity, this algorithm can be mapped onto a systolic array with high speed and low area complexity.

  • Avoiding Faulty Privileges in Fast Stabilizing Rings

    Jun KINIWA  

     
    PAPER

      Vol:
    E85-A No:5
      Page(s):
    949-956

    Most conventional studies on self-stabilization have been indifferent to the vulnerability under convergence. This paper investigates how mutual exclusion property can be achieved in self-stabilizing rings even for illegitimate configurations. We present a new method which uses a state with a large state space to detect faults. If some faults are detected, every process is reset and not given a privilege. Even if the reset values are different between processes, our protocol mimics the behavior of Dijkstra's unidirectional K-state protocol. Then we have a fast and safe mutual exclusion protocol. Simulation study also examines its performance.

  • Effective Calculation of Dual Frame for the Short-Time Fourier Expansion

    Shigeo WADA  

     
    PAPER-Digital Signal Processing

      Vol:
    E85-A No:5
      Page(s):
    1111-1118

    This paper presents effective methods to calculate dual frame of the short-time Fourier expansion (STFE) in l2(Z). Based on a relationship between the prototype window used for generating a frame and the dual prototype window used for generating a dual frame in the STFE, two useful numerical methods with a finite frame operator are proposed to obtain finite support dual frames in time domain formulation. The methods can be used to construct the multiple STFE (MSTFE) suitable for a time-frequency analysis, synthesis and coding of discrete-time nonstationary signals. Numerical simulation results are given to verify the effectiveness of the calculation of dual frame.

  • Subchannel Power Control in the OFDM System to Improve BER Performance under Multipath Channels

    Hongku KANG  Wooncheol HWANG  Kiseon KIM  

     
    PAPER

      Vol:
    E85-B No:5
      Page(s):
    902-907

    We propose a subchannel power control scheme in the OFDM system, which transmits data with a variable power level for each subchannel based on the received SNR. The OFDM system, employing the D-QPSK modulation and the proposed subchannel power control with a grouping coefficient equal to 3, gives about 2.3 dB gain in Eb/N0 comparing with the conventional OFDM system, under the two-ray multipath channel with the mean value of the second-ray's attenuation coefficient equal to 0.25, for the required BER equal to 10-5.

  • QoS Enhancement Methods for MPEG Video Transmission on the Internet

    Jun TAKAHASHI  Hideki TODE  Koso MURAKAMI  

     
    PAPER-Network

      Vol:
    E85-B No:5
      Page(s):
    1020-1030

    The advances in services using the present Internet mean that there will be increasing demand for Video on Demand (VoD) on the Internet in the near future. However, because of the best-effort characteristics of the Internet, it is important to suppress the degradation of communication quality caused by packet dropping when Internet traffic is congested. This paper focuses on MPEG transmission over the Internet, and suitable control mechanisms are established for an acceptable Quality of Service (QoS) improvement through detailed evaluation. Packets are classified using a frame-based scheme. The server applies the proposed End-to-End control scheme and shuffles the order of packets to avoid burst dropping, and may omit selected packets belonging to certain frames prior to forwarding. At the intermediate routers, transferred packets are transmitted according to Round Robin (RR) or Weighted Round Robin (WRR) scheduling, and are dropped statistically using selective Random Early Detection (RED) corresponding to frame attributes when there is congestion. We evaluate the proposed performance of transmission method using both computer simulations and empirical measurements of picture quality. The results show that when the traffic volume cannot be estimated in the intermediate routers, the combined use of RR, shuffling and conditional RED is effective, and when the traffic volume can be estimated, the combination of WRR, rate control and RED is effective.

  • A New Decoupling Circuit for Suppressing Radiated Emissions due to Power Plane Resonance

    Hideki SASAKI  Takashi HARADA  Toshihide KURIYAMA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E85-B No:5
      Page(s):
    1031-1037

    This paper presents a new decoupling circuit for suppressing radiated emissions due to power plane resonance in multilayer printed circuit boards (PCBs). This circuit is based on transmission line theory, and consists of two decoupling capacitors and one power trace. The two capacitors, one mounted on the power pin of an IC and the other mounted on the common power distribution bus in a board, are connected through the power trace. The characteristic impedance of the trace is much higher than the impedance of the capacitors. In addition, the length of the trace between the capacitors is less than 1/4 the effective wavelength for high frequency (e.g., 1 GHz). Tests we performed on simple PCBs confirm that our decoupling circuit suppresses radiated emissions due to power plane resonance.

  • A New Test Structure for Precise Location Measurement of Hot-Carrier-Induced Photoemission Peak in Subquarter-Micron MOSFETs

    Toshihiro MATSUDA  Mari FUNADA  Takashi OHZONE  Etsumasa KAMEDA  Shinji ODANAKA  Kyoji TAMASHITA  Norio KOIKE  Ken-ichiro TATSUUMA  

     
    PAPER

      Vol:
    E85-C No:5
      Page(s):
    1125-1133

    A new test structure, which has a 0.5 µm line and space polysilicon pattern of which center is aligned on the MOSFET's gate center, is proposed for hot-carrier-induced photoemission analysis in subquarter micron devices. The photoemission-intensity profiles were measured using the photoemission microscope with a liquid N2 cooled CCD imager. We successfully measured a peak position of photoemission intensity from the center of MOSFET's gate with a spatial resolution sufficiently less than 24 nm at the microscope magnification of 1000. The test structure is useful to study the photoemission effects in semiconductor devices.

  • A VLSI Algorithm for Division in GF(2m) Based on Extended Binary GCD Algorithm

    Yasuaki WATANABE  Naofumi TAKAGI  Kazuyoshi TAKAGI  

     
    PAPER

      Vol:
    E85-A No:5
      Page(s):
    994-999

    A VLSI algorithm for division in GF(2m) with the canonical basis representation is proposed. It is based on the extended Binary GCD algorithm for GF(2m), and performs division through iteration of simple operations, such as shifts and bitwise exclusive-OR operations. A divider in GF(2m) based on the algorithm has a linear array structure with a bit-slice feature and carries out division in 2m clock cycles. The amount of hardware of the divider is proportional to m and the depth is a constant independent of m.

  • Base Model Transmission for 3D Graphics in a Network Environment

    Bor-Sung LIANG  Chein-Wei JEN  

     
    LETTER-Computer Graphics

      Vol:
    E85-D No:5
      Page(s):
    914-918

    A base model should be transmitted first in progressive transmission schemes, and its transmission delay dominates initiation time for rendering. To reduce the initiation time, we restructure the base model to transmit visible vertices and triangles for some specific viewpoints first, and therefore clients can start rendering when parts of model file are received. Simulation results show that only 37.4% - 51.3% of model file are required to start rendering, and hence the initiation time is significantly reduced.

  • Subband Structure Engineering for Realizing Scaled CMOS with High Performance and Low Power Consumption

    Shin-ichi TAKAGI  

     
    INVITED PAPER

      Vol:
    E85-C No:5
      Page(s):
    1064-1072

    Enhancement of inversion-layer mobility and inversion-layer capacitance becomes more important in realizing scaled CMOS, from both viewpoints of higher performance and lower power consumption. This paper presents an engineering scenario of the subband structure in inversion layer for the enhancement of inversion-layer mobility and capacitance in MOSFETs. A key factor for the electron mobility enhancement is to increase the energy difference in the subband energy between the two-fold and the four-fold valleys and the resultant electron occupancy of the two-fold valleys. The electrical characteristics of two device structures based on this subband engineering, strained-Si MOSFETs and ultra-thin SOI MOSFETs, are studied. Also, it is shown that the reduction in SOI films down to less than inversion-layer thickness of bulk MOSFETs is an effective way to increase inversion-layer capacitance.

  • A Fault-Tolerant Deadlock-Free Routing Algorithm in a Meshed Network

    Deogkyoo LEE  Daekeun MOON  Ilgu YUN  Hagbae KIM  

     
    PAPER-Fault Tolerance

      Vol:
    E85-D No:4
      Page(s):
    722-726

    Since components faults occurring at arbitrary places (primarily on the links) affect seriously network performance and reliability, the multicomputers operating in harsh environments should be designed to guarantee normal network-missions in presence of those faults. One solution to the end is a fault-tolerant routing scheme, which enables messages to safely reach their destinations avoiding failed links when transmission of messages is blocked by certain faults. In the paper, we develop a fault-tolerant routing algorithm with deadlock freedom in an n-dimensional meshed network, and validate its efficiency and effectiveness through proper simulations. The aspects of fault-tolerance is adopted by appending partial-adaptiveness and detouring to the e-cube algorithm, while using a wormhole routing for the backbone routing method. The phenomenon of deadlock incurred due to its adaptiveness is eliminated by classifying a physical channel into a couple of virtual channels.

  • PDL Suppression on Long-Period Fiber Gratings by Azimuthally Isotropic Exposure

    Yuu ISHII  Kensuke SHIMA  Satoshi OKUDE  Kenji NISHIDE  Akira WADA  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    934-939

    We investigate a method to suppress the polarization-dependent loss (PDL) of long-period fiber gratings (LPFGs). We study the origins of the PDL and propose an azimuthally isotropic UV exposure to suppress the UV-induced birefringence and to realize low-PDL LPFGs. By using this technique and a low birefringent fiber together, the PDL of LPFGs can be reduced to a sufficiently low level required in high performance communication systems. Moreover, the validity of our theoretical modeling is confirmed by the experimental results.

  • Analysis of Border-Collision Bifurcations in a Flow Model of a Switching System

    Hiroto TANAKA  Toshimitsu USHIO  

     
    PAPER

      Vol:
    E85-A No:4
      Page(s):
    734-739

    In this paper, we consider a switching system modeled by a discrete-time flow model. By simulation, it is shown that a lot of border-collision bifurcations occur since the system is piecewise linear. By using its characteristics, we classify its dynamics into modes, and we define blocks and a kind of Poincare map based on the modes. We calculate occurrence conditions of each block and all the Poincare points by computer-assisted analysis. We consider two bifurcation phenomena, and we show that a Poincare point hits a boundary of the occurrence conditions of a block. So, both bifurcations are indeed border-collision bifurcations.

  • Characterization of a Set of Fabry-Perot Etalons Integrated in a Planar Lightwave Circuit

    Mitsuhiro TATEDA  Tomoko ARITA  Takashige OMATSU  

     
    LETTER-Fiber-Optic Transmission

      Vol:
    E85-B No:4
      Page(s):
    831-834

    We propose a set of Fabry-Perot etalons integrated in a planar lightwave circuit (PLC-FPE) designed for a unified system for broadcasting and communication. A PLC-FPE containing four etalons having different cavity lengths is fabricated and their loss and frequency characteristics are investigated. The total loss and the maximum finesse were found to be 8 dB and 34, respectively.

  • Adaptive Bitwidth Compression for Low Power Video Memory Design

    Vasily MOSHNYAGA  

     
    PAPER

      Vol:
    E85-A No:4
      Page(s):
    797-803

    Due to large capacitance, high access ratio and wide access bitwidth, frame memory is one of the most energy consuming devices in modern video encoders. This paper proposes a new architectural technique to reduce energy dissipation of frame memory through adaptive bitwith compression. Unlike related approaches, the technique utilizes the fixed order of memory accesses and data correlation of video sequences, by dynamically adjusting the memory bitwidth to the number of bits changed per pixel. Instead of treating the data bits independently, we group the most significant bits together, activating the corresponding group of bit-lines adaptively to data variation. The approach is not restricted to the specific bit-patterns nor depends on the storage phase. It works equally well on read and write accesses, as well as during precharging. Simulations show that using this method we can reduce the total energy consumption of the frame memory cell array by 20% without affecting the picture quality. The implementation scheme is simple yet compact.

  • The Novel Dispersion Reduced Fiber Bragg Grating Suitable for 10 Gb/s DWDM Systems

    Toshikazu SHIBATA  Kiyotaka MURASHIMA  Ken HASHIMOTO  Manabu SHIOZAKI  Toru IWASHIMA  Toshiaki OKUNO  Akira INOUE  Hiroshi SUGANUMA  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    927-933

    For the purpose of applying to 50 GHz channel spacing 10 Gb/s DWDM systems, the dispersion reduced fiber Bragg gratings (FBG) is demonstrated. This new FBG is designed by applying in optimized cosine expansion series to the refractive index profile. The 10 π-phase shifts in the refractive index profile realize both square filtering characteristics and linear phase responses resulting in reducing group delay variation in the reflective bandwidth. The FBG, fabricated according to the new design, is tested and shows more than 30 dB isolation for the adjacent channel and less than 10 psec group delay variation in the reflective bandwidth. This small dispersion leads to vast improvement of 10 Gb/s transmission performance. The power penalty of the new FBG is suppressed to 1/6 of that of conventional FBG. Furthermore, the symmetrical refractive index profile, realized by applying a cosine expansion series, shows that these optical characteristics have no dependence of the light launching direction. From these results, this new design offers an FBG suitable for the ADM used in 10 Gb/s DWDM systems.

  • Speech Enhancement Based on Speech/Noise-Dominant Decision

    Sukhyun YOON  Chang D. YOO  

     
    PAPER-Speech and Hearing

      Vol:
    E85-D No:4
      Page(s):
    744-750

    In this paper, a novel method to reduce additive time-varying noise is proposed. Unlike the previous methods, the proposed method requires neither the assumption about noise nor the estimate of the noise statistics from any pause regions. The enhancement is performed on a band-by-band basis for each time frame. Based on both the decision on whether a particular band in a frame is speech or noise dominant and the masking property of the human auditory system, an appropriate amount of noise is reduced in time-frequency domain using modified spectral subtraction. The proposed method was tested on various noisy conditions: car noise, F16 noise, white Gaussian noise, pink noise, tank noise and babble noise. On the basis of segmental SNR, inspection of spectrograms and MOS tests, the proposed method was found to be more effective than spectral subtraction with and without pause detection in reducing noise while minimizing distortion to speech.

  • Gain-Scheduled Control for an Active Suspension System with an Asymmetric Hydraulic Actuator

    YuJin JANG  Sang Woo KIM  

     
    LETTER-Systems and Control

      Vol:
    E85-A No:4
      Page(s):
    903-908

    The main objective of vehicle suspensions is to improve ride comfort and road holding ability. Though passive suspensions consist of spring and damper, active suspensions adopt an actuator in addition to passive suspensions. In this paper, a quarter car model with an asymmetric hydraulic actuator is used. Moreover, the damping coefficient of the damper, which is changed according to the actuator velocity, is considered. The LPV (Linear Parameter Varying) model is obtained by applying feedback linearization technique. Next, a gain-scheduled controller, based on LQ regulator with different weighting factor, is designed according to the actuator velocity and the stability of the proposed controller is also proved. The effectiveness of the proposed controller is shown by numerical simulations.

  • Design Considerations for Inverse Dispersion Fiber

    Kazuhide NAKAJIMA  Masaharu OHASHI  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    896-902

    In this paper, we describe design considerations for inverse dispersion fiber (IDF) whose chromatic dispersion is designed to compensate for that of conventional 1.3 µm zero-dispersion single-mode fiber (SMF). We clarify the appropriate structural parameters for W-type, triple-clad-type and ring-type refractive index profiles to realize a hybrid transmission line composed of SMF and IDF taking into consideration the bending sensitivity and the available wavelength bandwidth that achieves an average chromatic dispersion of below 1 ps/nm/km in the 1.55 µm region. We also show that, when the launched power is less than 0 dBm/ch, a hybrid transmission line composed of SMF and IDF provides better 40 Gbps 8 ch dense wavelength division multiplexing (DWDM) transmission performance than a conventional dispersion compensation scheme with a dispersion compensating fiber (DCF) module.

3321-3340hit(4624hit)