The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TAB(983hit)

21-40hit(983hit)

  • Efficiency Analysis for Inductive Power Transfer Using Segmented Parallel Line Feeder Open Access

    William-Fabrice BROU  Quang-Thang DUONG  Minoru OKADA  

     
    PAPER-Electronic Circuits

      Pubricized:
    2022/10/17
      Vol:
    E106-C No:5
      Page(s):
    165-173

    Parallel line feeder (PLF) consisting of a two-wire transmission line operating in the MHz band has been proposed as a wide-coverage short-distance wireless charging. In the MHz band, a PLF of several meters suffers from standing wave effect, resulting in fluctuation in power transfer efficiency accordingly to the receiver's position. This paper studies a modified version of the system, where the PLF is divided into individually compensated segments to mitigate the standing wave effect. Modelling the PLF as a lossy transmission line, this paper theoretically shows that if the segments' lengths are properly determined, it is able to improve and stabilize the efficiency for all positions. Experimental results at 27.12 MHz confirm the theoretical analysis and show that a fairly high efficiency of 70% can be achieved.

  • Study of FIT Dedicated Computer with Dataflow Architecture for High Performance 2-D Magneto-Static Field Simulation

    Chenxu WANG  Hideki KAWAGUCHI  Kota WATANABE  

     
    PAPER

      Pubricized:
    2022/08/23
      Vol:
    E106-C No:4
      Page(s):
    136-143

    An approach to dedicated computers is discussed in this study as a possibility for portable, low-cost, and low-power consumption high-performance computing technologies. Particularly, dataflow architecture dedicated computer of the finite integration technique (FIT) for 2D magnetostatic field simulation is considered for use in industrial applications. The dataflow architecture circuit of the BiCG-Stab matrix solver of the FIT matrix calculation is designed by the very high-speed integrated circuit hardware description language (VHDL). The operation of the dedicated computer's designed circuit is considered by VHDL logic circuit simulation.

  • A State-Space Approach and Its Estimation Bias Analysis for Adaptive Notch Digital Filters with Constrained Poles and Zeros

    Yoichi HINAMOTO  Shotaro NISHIMURA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/09/16
      Vol:
    E106-A No:3
      Page(s):
    582-589

    This paper deals with a state-space approach for adaptive second-order IIR notch digital filters with constrained poles and zeros. A simplified iterative algorithm is derived from the gradient-descent method to minimize the mean-squared output of an adaptive notch digital filter. Then, stability and parameter-estimation bias are analyzed for the simplified iterative algorithm. A numerical example is presented to demonstrate the validity and effectiveness of the proposed adaptive state-space notch digital filter and parameter-estimation bias analysis.

  • Ordinal Regression Based on the Distributional Distance for Tabular Data

    Yoshiyuki TAJIMA  Tomoki HAMAGAMI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/12/16
      Vol:
    E106-D No:3
      Page(s):
    357-364

    Ordinal regression is used to classify instances by considering ordinal relation between labels. Existing methods tend to decrease the accuracy when they adhere to the preservation of the ordinal relation. Therefore, we propose a distributional knowledge-based network (DK-net) that considers ordinal relation while maintaining high accuracy. DK-net focuses on image datasets. However, in industrial applications, one can find not only image data but also tabular data. In this study, we propose DK-neural oblivious decision ensemble (NODE), an improved version of DK-net for tabular data. DK-NODE uses NODE for feature extraction. In addition, we propose a method for adjusting the parameter that controls the degree of compliance with the ordinal relation. We experimented with three datasets: WineQuality, Abalone, and Eucalyptus dataset. The experiments showed that the proposed method achieved high accuracy and small MAE on three datasets. Notably, the proposed method had the smallest average MAE on all datasets.

  • Quality and Quantity Pair as Trust Metric

    Ken MANO  Hideki SAKURADA  Yasuyuki TSUKADA  

     
    PAPER-Information Network

      Pubricized:
    2022/11/08
      Vol:
    E106-D No:2
      Page(s):
    181-194

    We present a mathematical formulation of a trust metric using a quality and quantity pair. Under a certain assumption, we regard trust as an additive value and define the soundness of a trust computation as not to exceed the total sum. Moreover, we point out the importance of not only soundness of each computed trust but also the stability of the trust computation procedure against changes in trust value assignment. In this setting, we define trust composition operators. We also propose a trust computation protocol and prove its soundness and stability using the operators.

  • Global Asymptotic Stabilization of Feedforward Systems with an Uncertain Delay in the Input by Event-Triggered Control

    Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Pubricized:
    2022/06/28
      Vol:
    E106-A No:1
      Page(s):
    69-72

    In this letter, we consider a global stabilization problem for a class of feedforward systems by an event-triggered control. This is an extended work of [10] in a way that there are uncertain feedforward nonlinearity and time-varying input delay in the system. First, we show that the considered system is globally asymptotically stabilized by a proposed event-triggered controller with a gain-scaling factor. Then, we also show that the interexecution times can be enlarged by adjusting a gain-scaling factor. A simulation example is given for illustration.

  • A Multi-Tree Approach to Mutable Order-Preserving Encoding

    Seungkwang LEE  Nam-su JHO  

     
    LETTER

      Pubricized:
    2022/07/28
      Vol:
    E105-D No:11
      Page(s):
    1930-1933

    Order-preserving encryption using the hypergeomatric probability distribution leaks about the half bits of a plaintext and the distance between two arbitrary plaintexts. To solve these problems, Popa et al. proposed a mutable order-preserving encoding. This is a keyless encoding scheme that adopts an order-preserving index locating the corresponding ciphertext via tree-based data structures. Unfortunately, it has the following shortcomings. First, the frequency of the ciphertexts reveals that of the plaintexts. Second, the indices are highly correlated to the corresponding plaintexts. For these reasons, statistical cryptanalysis may identify the encrypted fields using public information. To overcome these limitations, we propose a multi-tree approach to the mutable order-preserving encoding. The cost of interactions increases by the increased number of trees, but the proposed scheme mitigates the distribution leakage of plaintexts and also reduces the problematic correlation to plaintexts.

  • Coupler Design and Analysis of Capacitive Wireless Power Charging for Implantable Medical Devices

    Marimo MATSUMOTO  Masaya TAMURA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/03/30
      Vol:
    E105-C No:9
      Page(s):
    398-406

    Couplers in a film-type capacitive wireless power charging (CWC) system for an implantable medical device were designed and analyzed in this work. Due to the high conductivity of the human body, two paths contribute to the power transmission, namely a high-frequency current and an electric field. This was confirmed by an equivalent circuit of the system. During analysis of the system, we used pig skin with subcutaneous fat, which has a high affinity with the human body, to search for a highly efficient electrode shape. Subsequently, we fabricated the designed coupler and measured ηmax. An ηmax of 56.6% was obtained for a half-circular coupler with a radius of 20 mm and a distance of 10 mm between adjacent couplers. This study will contribute to the realization of implantable devices that can be recharged during breaks or while sleeping at home and is expected to significantly reduce the burden on patients.

  • On the Sum-of-Squares of Differential Distribution Table for (n, n)-Functions

    Rong CHENG  Yu ZHOU  Xinfeng DONG  Xiaoni DU  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/03/10
      Vol:
    E105-A No:9
      Page(s):
    1322-1329

    S-box is one of the core components of symmetric cryptographic algorithms, but differential distribution table (DDT) is an important tool to research some properties of S-boxes to resist differential attacks. In this paper, we give a relationship between the sum-of-squares of DDT and the sum-of-squares indicator of (n, m)-functions based on the autocorrelation coefficients. We also get some upper and lower bounds on the sum-of-squares of DDT of balanced (n, m)-functions, and prove that the sum-of-squares of DDT of (n, m)-functions is affine invariant under affine affine equivalent. Furthermore, we obtain a relationship between the sum-of-squares of DDT and the signal-to-noise ratio of (n, m)-functions. In addition, we calculate the distributions of the sum-of-squares of DDT for all 3-bit S-boxes, the 4-bit optimal S-boxes and all 302 balanced S-boxes (up to affine equivalence), data experiments verify our results.

  • A Note on the Intersection of Alternately Orientable Graphs and Cocomparability Graphs

    Asahi TAKAOKA  

     
    PAPER-Graphs and Networks, Algorithms and Data Structures

      Pubricized:
    2022/03/07
      Vol:
    E105-A No:9
      Page(s):
    1223-1227

    We studied whether a statement similar to the Ghouila-Houri's theorem might hold for alternating orientations of cocomparability graphs. In this paper, we give the negative answer. We prove that it is NP-complete to decide whether a cocomparability graph has an orientation that is alternating and acyclic. Hence, cocomparability graphs with an acyclic alternating orientation form a proper subclass of alternately orientable cocomparability graphs. We also provide a separating example, that is, an alternately orientable cocomparability graph such that no alternating orientation is acyclic.

  • A Trade-Off between Memory Stability and Connection Sparsity in Simple Binary Associative Memories

    Kento SAKA  Toshimichi SAITO  

     
    LETTER-Nonlinear Problems

      Pubricized:
    2022/03/29
      Vol:
    E105-A No:9
      Page(s):
    1377-1380

    This letter studies a biobjective optimization problem in binary associative memories characterized by ternary connection parameters. First, we introduce a condition of parameters that guarantees storage of any desired memories and suppression of oscillatory behavior. Second, we define a biobjective problem based on two objectives that evaluate uniform stability of desired memories and sparsity of connection parameters. Performing precise numerical analysis for typical examples, we have clarified existence of a trade-off between the two objectives.

  • Rate-Encoding A/D Converter Based on Spiking Neuron Model with Rectangular Wave Threshold Signal

    Yusuke MATSUOKA  Hiroyuki KAWASAKI  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2022/02/21
      Vol:
    E105-A No:8
      Page(s):
    1101-1109

    This paper proposes and characterizes an A/D converter (ADC) based on a spiking neuron model with a rectangular threshold signal. The neuron repeats an integrate-and-fire process and outputs a superstable spike sequence. The dynamics of this system are closely related to those of rate-encoding ADCs. We propose an ADC system based on the spiking neuron model. We derive a theoretical parameter region in a limited time interval of the digital output sequence. We analyze the conversion characteristics in this region and verify that they retain the monotonic increase and rate encoding of an ADC.

  • An Interpretable Feature Selection Based on Particle Swarm Optimization

    Yi LIU  Wei QIN  Qibin ZHENG  Gensong LI  Mengmeng LI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2022/05/09
      Vol:
    E105-D No:8
      Page(s):
    1495-1500

    Feature selection based on particle swarm optimization is often employed for promoting the performance of artificial intelligence algorithms. However, its interpretability has been lacking of concrete research. Improving the stability of the feature selection method is a way to effectively improve its interpretability. A novel feature selection approach named Interpretable Particle Swarm Optimization is developed in this paper. It uses four data perturbation ways and three filter feature selection methods to obtain stable feature subsets, and adopts Fuch map to convert them to initial particles. Besides, it employs similarity mutation strategy, which applies Tanimoto distance to choose the nearest 1/3 individuals to the previous particles to implement mutation. Eleven representative algorithms and four typical datasets are taken to make a comprehensive comparison with our proposed approach. Accuracy, F1, precision and recall rate indicators are used as classification measures, and extension of Kuncheva indicator is employed as the stability measure. Experiments show that our method has a better interpretability than the compared evolutionary algorithms. Furthermore, the results of classification measures demonstrate that the proposed approach has an excellent comprehensive classification performance.

  • SeCAM: Tightly Accelerate the Image Explanation via Region-Based Segmentation

    Phong X. NGUYEN  Hung Q. CAO  Khang V. T. NGUYEN  Hung NGUYEN  Takehisa YAIRI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/05/11
      Vol:
    E105-D No:8
      Page(s):
    1401-1417

    In recent years, there has been an increasing trend of applying artificial intelligence in many different fields, which has a profound and direct impact on human life. Consequently, this raises the need to understand the principles of model making predictions. Since most current high-precision models are black boxes, neither the AI scientist nor the end-user profoundly understands what is happening inside these models. Therefore, many algorithms are studied to explain AI models, especially those in the image classification problem in computer vision such as LIME, CAM, GradCAM. However, these algorithms still have limitations, such as LIME's long execution time and CAM's confusing interpretation of concreteness and clarity. Therefore, in this paper, we will propose a new method called Segmentation - Class Activation Mapping (SeCAM)/ This method combines the advantages of these algorithms above while at simultaneously overcoming their disadvantages. We tested this algorithm with various models, including ResNet50, InceptionV3, and VGG16 from ImageNet Large Scale Visual Recognition Challenge (ILSVRC) data set. Outstanding results were achieved when the algorithm has met all the requirements for a specific explanation in a remarkably short space of time.

  • Dynamic Fault Tolerance for Multi-Node Query Processing

    Yutaro BESSHO  Yuto HAYAMIZU  Kazuo GODA  Masaru KITSUREGAWA  

     
    PAPER

      Pubricized:
    2022/02/03
      Vol:
    E105-D No:5
      Page(s):
    909-919

    Parallel processing is a typical approach to answer analytical queries on large database. As the size of the database increases, we often try to increase the parallelism by incorporating more processing nodes. However, this approach increases the possibility of node failure as well. According to the conventional practice, if a failure occurs during query processing, the database system restarts the query processing from the beginning. Such temporal cost may be unacceptable to the user. This paper proposes a fault-tolerant query processing mechanism, named PhoeniQ, for analytical parallel database systems. PhoeniQ continuously takes a checkpoint for every operator pipeline and replicates the output of each stateful operator among different processing nodes. If a single processing node fails during query processing, another can promptly take over the processing. Hence, PhoneniQ allows the database system to efficiently resume query processing after a partial failure event. This paper presents a key design of PhoeniQ and prototype-based experiments to demonstrate that PhoeniQ imposes negligible performance overhead and efficiently continues query processing in the face of node failure.

  • Constructions of l-Adic t-Deletion-Correcting Quantum Codes Open Access

    Ryutaroh MATSUMOTO  Manabu HAGIWARA  

     
    PAPER-Coding Theory

      Pubricized:
    2021/09/17
      Vol:
    E105-A No:3
      Page(s):
    571-575

    We propose two systematic constructions of deletion-correcting codes for protecting quantum inforomation. The first one works with qudits of any dimension l, which is referred to as l-adic, but only one deletion is corrected and the constructed codes are asymptotically bad. The second one corrects multiple deletions and can construct asymptotically good codes. The second one also allows conversion of stabilizer-based quantum codes to deletion-correcting codes, and entanglement assistance.

  • ExamChain: A Privacy-Preserving Onscreen Marking System Based on Consortium Blockchain

    Haoyang AN  Jiageng CHEN  

     
    PAPER

      Pubricized:
    2021/12/06
      Vol:
    E105-D No:2
      Page(s):
    235-247

    The development of educational informatization makes data privacy particularly important in education. With society's development, the education system is complicated, and the result of education evaluation becomes more and more critical to students. The evaluation process of education must be justice and transparent. In recent years, the Onscreen Marking (OSM) system based on traditional cloud platforms has been widely used in various large-scale public examinations. However, due to the excessive concentration of power in the existing scheme, the mainstream marking process is not transparent, and there are hidden dangers of black-box operation, which will damage the fairness of the examination. In addition, issues related to data security and privacy are still considered to be severe challenges. This paper deals with the above problems by providing secure and private transactions in a distributed OSM assuming the semi-trusted examination center. We have implemented a proof-of-concept for a consortium blockchain-based OSM in a privacy-preserving and auditable manner, enabling markers to mark on the distributed ledger anonymously. We have proposed a distributed OSM system in high-level, which provides theoretical support for the fair evaluation process of education informatization. It has particular theoretical and application value for education combined with blockchain.

  • A Novel Construction of 2-Resilient Rotation Symmetric Boolean Functions

    Jiao DU  Shaojing FU  Longjiang QU  Chao LI  Tianyin WANG  Shanqi PANG  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/08/03
      Vol:
    E105-A No:2
      Page(s):
    93-99

    In this paper, by using the properties of the cyclic Hadamard matrices of order 4t, an infinite class of (4t-1)-variable 2-resilient rotation symmetric Boolean functions is constructed, and the nonlinearity of the constructed functions are also studied. To the best of our knowledge, this is the first class of direct constructions of 2-resilient rotation symmetric Boolean functions. The spirit of this method is different from the known methods depending on the solutions of an equation system proposed by Du Jiao, et al. Several situations are examined, as the direct corollaries, three classes of (4t-1)-variable 2-resilient rotation symmetric Boolean functions are proposed based on the corresponding sequences, such as m sequences, Legendre sequences, and twin primes sequences respectively.

  • A Novel Transferable Sparse Regression Method for Cross-Database Facial Expression Recognition

    Wenjing ZHANG  Peng SONG  Wenming ZHENG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2021/10/12
      Vol:
    E105-D No:1
      Page(s):
    184-188

    In this letter, we propose a novel transferable sparse regression (TSR) method, for cross-database facial expression recognition (FER). In TSR, we firstly present a novel regression function to regress the data into a latent representation space instead of a strict binary label space. To further alleviate the influence of outliers and overfitting, we impose a row sparsity constraint on the regression term. And a pairwise relation term is introduced to guide the feature transfer learning. Secondly, we design a global graph to transfer knowledge, which can well preserve the cross-database manifold structure. Moreover, we introduce a low-rank constraint on the graph regularization term to uncover additional structural information. Finally, several experiments are conducted on three popular facial expression databases, and the results validate that the proposed TSR method is superior to other non-deep and deep transfer learning methods.

  • Leveraging Scale-Up Machines for Swift DBMS Replication on IaaS Platforms Using BalenaDB

    Kaiho FUKUCHI  Hiroshi YAMADA  

     
    PAPER-Software System

      Pubricized:
    2021/10/01
      Vol:
    E105-D No:1
      Page(s):
    92-104

    In infrastructure-as-a-service platforms, cloud users can adjust their database (DB) service scale to dynamic workloads by changing the number of virtual machines running a DB management system (DBMS), called DBMS instances. Replicating a DBMS instance is a non-trivial task since DBMS replication is time-consuming due to the trend that cloud vendors offer high-spec DBMS instances. This paper presents BalenaDB, which performs urgent DBMS replication for handling sudden workload increases. Unlike convectional replication schemes that implicitly assume DBMS replicas are generated on remote machines, BalenaDB generates a warmed-up DBMS replica on an instance running on the local machine where the master DBMS instance runs, by leveraging the master DBMS resources. We prototyped BalenaDB on MySQL 5.6.21, Linux 3.17.2, and Xen 4.4.1. The experimental results show that the time for generating the warmed-up DBMS replica instance on BalenaDB is up to 30× shorter than an existing DBMS instance replication scheme, achieving significantly efficient memory utilization.

21-40hit(983hit)