The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TAB(983hit)

221-240hit(983hit)

  • Metastable Ordered Phase Formation in CoPt and Co3Pt Alloy Thin Films Epitaxially Grown on Single-Crystal Substrates

    Mitsuru OHTAKE  Daisuke SUZUKI  Fumiyoshi KIRINO  Masaaki FUTAMOTO  

     
    REVIEW PAPER

      Vol:
    E96-C No:12
      Page(s):
    1460-1468

    CoPt and Co3Pt alloy thin films are prepared on MgO(111), SrTiO3(111), and Al2O3(0001) single-crystal substrates by varying the substrate temperature in a range from room temperature to 600°C by using an ultra-high vacuum radio-frequency magnetron sputtering system. The formation of metastable ordered phase and the structural thermal stability are briefly investigated. CoPt and Co3Pt films with the close-packed plane parallel to the substrate surface grow epitaxially on these oxide single-crystal substrates. CoPt epitaxial films are also formed by employing Pt, Pd, Cu, Cr, Ti, and Ru underlayers hetero-epitaxially grown on MgO(111) substrates. The crystal structure is evaluated by considering the order degree and the atomic stacking sequence of close-packed plane. Metastable ordered phases of L11, Bh, and D019 are preferentially formed in the CoPt and the Co3Pt films deposited around 300°C. Metastable ordered phase formation is influenced by the substrate temperature, the film composition, and the underlayer material. With increasing the substrate temperature up to around 300°C, the order degree increases. As the substrate temperature further increases, the order degree decreases. Annealing a disordered film at 300°C does not effectively enhance ordering. The CoPt and the Co3Pt films which include metastable ordered phases have flat surfaces and show strong perpendicular magnetic anisotropies reflecting the magnetocrystalline anisotropies of ordered crystals.

  • A New Theoretical Formulation of a General Feedback Amplifier Circuit and Its Fundamental Theorems

    Takahiro INOUE  

     
    LETTER-Circuit Theory

      Vol:
    E96-A No:11
      Page(s):
    2279-2281

    A new theoretical formulation based on BIBO (Bounded Input Bounded Output) operators is proposed for a general feedback amplifier circuit. Several fundamental theorems are derived in this letter. The main theorem provides a basis for a realization of an inverse of a feedback-branch linear or nonlinear BIBO operator satisfying the associative law.

  • On Global Exponential Stabilization of a Class of Nonlinear Systems by Output Feedback via Matrix Inequality Approach

    Min-Sung KOO  Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Vol:
    E96-A No:10
      Page(s):
    2034-2038

    In this letter, we consider the global exponential stabilization problem by output feedback for a class of nonlinear systems. Along with a newly proposed matrix inequality condition, the proposed control method has improved flexibility in dealing with nonlinearity, over the existing methods. Analysis and examples are given to illustrate the improved features of our control method.

  • High Speed and High Accuracy Pre-Classification Method for OCR: Margin Added Hashing

    Yutaka KATSUYAMA  Yoshinobu HOTTA  Masako OMACHI  Shinichiro OMACHI  

     
    PAPER-Pattern Recognition

      Vol:
    E96-D No:9
      Page(s):
    2087-2095

    Reducing the time complexity of character matching is critical to the development of efficient Japanese Optical Character Recognition (OCR) systems. To shorten the processing time, recognition is usually split into separate pre-classification and precise recognition stages. For high overall recognition performance, the pre-classification stage must both have very high classification accuracy and return only a small number of putative character categories for further processing. Furthermore, for any practical system, the speed of the pre-classification stage is also critical. The associative matching (AM) method has often been used for fast pre-classification because of its use of a hash table and reliance on just logical bit operations to select categories, both of which make it highly efficient. However, a certain level of redundancy exists in the hash table because it is constructed using only the minimum and maximum values of the data on each axis and therefore does not take account of the distribution of the data. We propose a novel method based on the AM method that satisfies the performance criteria described above but in a fraction of the time by modifying the hash table to reduce the range of each category of training characters. Furthermore, we show that our approach outperforms pre-classification by VQ clustering, ANN, LSH and AM in terms of classification accuracy, reducing the number of candidate categories and total processing time across an evaluation test set comprising 116,528 Japanese character images.

  • On Detecting Delay Faults Using Time-to-Digital Converter Embedded in Boundary Scan

    Hiroyuki YOTSUYANAGI  Hiroyuki MAKIMOTO  Takanobu NIMIYA  Masaki HASHIZUME  

     
    PAPER

      Vol:
    E96-D No:9
      Page(s):
    1986-1993

    This paper proposes a method for testing delay faults using a boundary scan circuit in which a time-to-digital converter (TDC) is embedded. The incoming transitions from the other cores or chips are captured at the boundary scan circuit. The TDC circuit is modified to set the initial value for a delay line through which the transition is propagated. The condition for measuring timing slacks of two or more paths is also investigated since the overlap of the signals may occur in the delay line of the TDC in our boundary scan circuit. An experimental IC with the TDC and boundary scan is fabricated and is measured to estimate the delay of some paths measured by the TDC embedded in boundary scan cells. The simulation results for a benchmark circuit with the boundary scan circuit are also shown for the case that timing slacks of multiple paths can be observed even if the signals overlap in the TDC.

  • Stochastic Asymptotic Stabilizers for Deterministic Input-Affine Systems Based on Stochastic Control Lyapunov Functions

    Yuki NISHIMURA  Kanya TANAKA  Yuji WAKASA  Yuh YAMASHITA  

     
    PAPER-Systems and Control

      Vol:
    E96-A No:8
      Page(s):
    1695-1702

    In this paper, a stochastic asymptotic stabilization method is proposed for deterministic input-affine control systems, which are randomized by including Gaussian white noises in control inputs. The sufficient condition is derived for the diffusion coefficients so that there exist stochastic control Lyapunov functions for the systems. To illustrate the usefulness of the sufficient condition, the authors propose the stochastic continuous feedback law, which makes the origin of the Brockett integrator become globally asymptotically stable in probability.

  • Efficient Reverse Converter Design for New Adaptable Four-Moduli Set {2n + k, 2n + 1, 2n - 1, 22n + 1}

    Ming-Hwa SHEU  Yuan-Ching KUO  Su-Hon LIN  Siang-Min SIAO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E96-A No:7
      Page(s):
    1571-1578

    This paper presents a novel adaptable 4-moduli set {2n + k, 2n+1, 2n-1, 22n+1}. It offers diverse dynamic ranges (DRs) from 25n-2n to 25n + k-2n + k that are used to conquer the over-range issue in RNS-application hardware designs. The proposed adaptable set possesses the coarse parameter n and fine parameter k. It not only has better parallelism and larger dynamic range (DR) than the existing adaptive 3-moduli sets, but also holds more sizable and flexible than the general 4-moduli sets with single parameter. For the adaptable R-to-B conversion, this paper first derives a fast reverse converting algorithm based on Chinese Remainder Theorem (CRT) and then presents the efficient converter architecture. From the experimental results, the proposed adaptable converter achieves better hardware performance in various DRs. Based on TSMC 0.18 µm CMOS technology, the proposed converter design is implemented and its results get at least 20.93% saving of Area-Delay-Power (ADP) products on average when comparing with the latest converter works.

  • Transformation of a Relational Database to RDF/RDFS with ER2iDM

    Mi-Young CHOI  Chang-Joo MOON  Doo-Kwon BAIK  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E96-D No:7
      Page(s):
    1478-1488

    The Semantic Web uses RDF/RDFS, which can enable a machine to understand web data without human interference. But most web data is not available in RDF/RDFS documents because most web data is still stored in databases. It is much more favorable to use stored data in a database to build the Semantic Web. This paper proposes an enhanced relational RDF/RDFS interoperable data model (ER2iDM) and a transformation procedure from relational data model (RDM) to RDF/RDFS based on ER2iDM. The ER2iDM is a data model that plays the role of an inter-mediator between RDM and RDF/RDFS during a transformation procedure. The data and schema information in the database are migrated to the ER2iDM according to the proposed translation procedures without incurring loss of meaning of the entities, relationships, and data. The RDF/RDFS generation tool makes a RDF/RDFS XML document automatically from the ER2iDM. The proposed ER2iDM and transformation procedure provides detailed guidelines for transformation from RDM to RDF/RDFS unlike existing studies; therefore, we can more efficiently build up the Semantic Web using database stored data.

  • Reporting All Segment Intersections Using an Arbitrary Sized Work Space

    Matsuo KONAGAYA  Tetsuo ASANO  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1066-1071

    This paper presents an efficient algorithm for reporting all intersections among n given segments in the plane using work space of arbitrarily given size. More exactly, given a parameter s which is between Ω(1) and O(n) specifying the size of work space, the algorithm reports all the segment intersections in roughly O(n2/+ K) time using O(s) words of O(log n) bits, where K is the total number of intersecting pairs. The time complexity can be improved to O((n2/s) log s + K) when input segments have only some number of different slopes.

  • Partial-Update Normalized Sign LMS Algorithm Employing Sparse Updates

    Seong-Eun KIM  Young-Seok CHOI  Jae-Woo LEE  Woo-Jin SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E96-A No:6
      Page(s):
    1482-1487

    This paper provides a novel normalized sign least-mean square (NSLMS) algorithm which updates only a part of the filter coefficients and simultaneously performs sparse updates with the goal of reducing computational complexity. A combination of the partial-update scheme and the set-membership framework is incorporated into the context of L∞-norm adaptive filtering, thus yielding computational efficiency. For the stabilized convergence, we formulate a robust update recursion by imposing an upper bound of a step size. Furthermore, we analyzed a mean-square stability of the proposed algorithm for white input signals. Experimental results show that the proposed low-complexity NSLMS algorithm has similar convergence performance with greatly reduced computational complexity compared to the partial-update NSLMS, and is comparable to the set-membership partial-update NLMS.

  • A Feed-Forward Time Amplifier Using a Phase Detector and Variable Delay Lines

    Kiichi NIITSU  Naohiro HARIGAI  Takahiro J. YAMAGUCHI  Haruo KOBAYASHI  

     
    BRIEF PAPER

      Vol:
    E96-C No:6
      Page(s):
    920-922

    This paper describes a high-speed, robust, scalable, and low-cost feed-forward time amplifier that uses phase detectors and variable delay lines. The amplifier works by detecting the time difference between two rising input edges with a phase detector and adjusting the delay of the variable delay line accordingly. A test chip was designed and fabricated in 65 nm CMOS. The measured resulting performance indicates that it is possible to amplify time difference while maintaining high-speed operation.

  • Deciding Schema k-Secrecy for XML Databases

    Chittaphone PHONHARATH  Kenji HASHIMOTO  Hiroyuki SEKI  

     
    PAPER-Static Analysis

      Vol:
    E96-D No:6
      Page(s):
    1268-1277

    We study a static analysis problem on k-secrecy, which is a metric for the security against inference attacks on XML databases. Intuitively, k-secrecy means that the number of candidates of sensitive data of a given database instance or the result of unauthorized query cannot be narrowed down to k-1 by using available information such as authorized queries and their results. In this paper, we investigate the decidability of the schema k-secrecy problem defined as follows: for a given XML database schema, an authorized query and an unauthorized query, decide whether every database instance conforming to the given schema is k-secret. We first show that the schema k-secrecy problem is undecidable for any finite k>1 even when queries are represented by a simple subclass of linear deterministic top-down tree transducers (LDTT). We next show that the schema ∞-secrecy problem is decidable for queries represented by LDTT. We give an algorithm for deciding the schema ∞-secrecy problem and analyze its time complexity. We show the schema ∞-secrecy problem is EXPTIME-complete for LDTT. Moreover, we show similar results LDTT with regular look-ahead.

  • Relaxed Stability Condition for T-S Fuzzy Systems Using a New Fuzzy Lyapunov Function

    Sangsu YEH  Sangchul WON  

     
    PAPER-Systems and Control

      Vol:
    E96-A No:6
      Page(s):
    1429-1436

    This paper presents the stability analysis for continuous-time Takagi-Sugeno fuzzy systems using a fuzzy Lyapunov function. The proposed fuzzy Lyapunov function involves the time derivatives of states to include new free matrices in the LMI stability conditions. These free matrices extend the solution space for Linear Matrix Inequalities (LMIs) problems. Numerical examples illustrate the effectiveness of the proposed methods.

  • High-Speed Fully-Adaptable CRC Accelerators

    Amila AKAGIC  Hideharu AMANO  

     
    PAPER-Computer System

      Vol:
    E96-D No:6
      Page(s):
    1299-1308

    Cyclic Redundancy Check (CRC) is a well known error detection scheme used to detect corruption of digital content in digital networks and storage devices. Since it is a compute-intensive process which adversely affects performance, hardware acceleration using FPGAs has been tried and satisfactory performance has been achieved. However, recent extended usage of networks and storage systems require various correction capabilities for various CRC standards. Traditional hardware designs based on the LFSR (Linear Feedback Shift Register) tend to have fixed structure without such flexibility. Here, fully-adaptable CRC accelerator based on a table-based algorithm is proposed. The table-based algorithm is a flexible method commonly used in software implementations. It has been rarely implemented with the hardware, since it is believed that the operational speed is not enough. However, by using pipelined structure and efficient use of memory modules in FPGAs, it appeared that the table-based fixed CRC accelerators achieved better performance than traditional implementation. Based on the implementation, fully-adaptable CRC accelerator which eliminate the need for many non-adaptable CRC implementations is proposed. The accelerator has ability to process arbitrary number of input data and generates CRC for any known CRC standard, up to 65 bits of generator polynomial, during run-time. Further, we modify Table generation algorithm in order to decrease its space complexity from O(nm) to O(n). On Xilinx Virtex 6 LX550T board, the fully-adaptable accelerators occupy between 1 to 2% area to produce maximum of 289.8 Gbps at 283.1 MHz if BRAM is deployed, or between 1.6 - 14% of area for 418 Gbps at 408.9 MHz if tables are implemented in logic. Proposed architecture enables further expansion of throughput by increasing a number of input bits M processed at a time.

  • Generalized Feed Forward Shift Registers and Their Application to Secure Scan Design

    Katsuya FUJIWARA  Hideo FUJIWARA  

     
    PAPER-Dependable Computing

      Vol:
    E96-D No:5
      Page(s):
    1125-1133

    In this paper, we introduce generalized feed-forward shift registers (GF2SR) to apply them to secure and testable scan design. Previously, we introduced SR-equivalents and SR-quasi-equivalents which can be used in secure and testable scan design, and showed that inversion-inserted linear feed-forward shift registers (I2LF2SR) are useful circuits for the secure and testable scan design. GF2SR is an extension of I2LF2SR and the class is much wider than that of I2LF2SR. Since the cardinality of the class of GF2SR is much larger than that of I2LF2SR, the security level of scan design with GF2SR is much higher than that of I2LF2SR. We consider how to control/observe GF2SR to guarantee easy scan-in/out operations, i.e., state-justification and state-identification problems are considered. Both scan-in and scan-out operations can be overlapped in the same way as the conventional scan testing, and hence the test sequence for the proposed scan design is of the same length as the conventional scan design. A program called WAGSR (Web Application for Generalized feed-forward Shift Registers) is presented to solve those problems.

  • Flash-Aware Page Management Policy of a Navigation-Specialized Mobile DBMS for an Incremental Map Update

    KyoungWook MIN  JeongDan CHOI  

     
    LETTER-Data Engineering, Web Information Systems

      Vol:
    E96-D No:5
      Page(s):
    1211-1214

    The performance of a mobile database management system (DBMS) in which most queries are made up of random data accesses if the NAND flash memory is used as storage media of the DBMS is degraded. The reason for this is that the performance of NAND flash memory is good for writing sequentially but poor when writing randomly. Thus, a new storage structure and querying policies are needed in mobile DBMS when flash memory is used as the storage media. In this letter, we propose a new policy of database page management to enhance the frequent random update performance, and then evaluate the performance experimentally.

  • NBTI Reliability of PFETs under Post-Fabrication Self-Improvement Scheme for SRAM

    Nurul Ezaila ALIAS  Anil KUMAR  Takuya SARAYA  Shinji MIYANO  Toshiro HIRAMOTO  

     
    BRIEF PAPER

      Vol:
    E96-C No:5
      Page(s):
    620-623

    In this paper, negative bias temperature instability (NBTI) reliability of pFETs is analyzed under the post-fabrication SRAM self-improvement scheme that we have developed recently, where cell stability is self-improved by simply applying high stress voltage to supply voltage terminal (VDD) of SRAM cells. It is newly found that there is no significant difference in both threshold voltage and drain current degradation by NBTI stress between fresh PFETs and PFETs after self-improvement scheme application, indicating that the self-improvement scheme has no critical reliability problem.

  • A High Performance Current Latch Sense Amplifier with Vertical MOSFET

    Hyoungjun NA  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E96-C No:5
      Page(s):
    655-662

    In this paper, a high performance current latch sense amplifier (CLSA) with vertical MOSFET is proposed, and its performances are investigated. The proposed CLSA with the vertical MOSFET realizes a 11% faster sensing time with about 3% smaller current consumption relative to the conventional CLSA with the planar MOSFET. Moreover, the proposed CLSA with the vertical MOSFET achieves an 1.11 dB increased voltage gain G(f) relative to the conventional CLSA with the planar MOSFET. Furthermore, the proposed CLSA realizes up to about 1.7% larger yield than the conventional CLSA, and its circuit area is 42% smaller than the conventional CLSA.

  • Networked Control of Uncertain Systems over Data Rate Limited and Lossy Channels

    Kunihisa OKANO  Hideaki ISHII  

     
    PAPER

      Vol:
    E96-A No:5
      Page(s):
    853-860

    This paper studies stabilization of uncertain systems over finite data rate and lossy channels. Limitations on data rate and packet loss probability are derived, characterized by the product of the eigenvalues of the plant. It is worth noting that even if we assume the most conservative plant dynamics, existing limitations for nominal plants are looser than those given in this paper. This fact implies that plant uncertainties cause strictly higher requirements in communication. We consider linear discrete-time systems with parametric uncertainties and employ uniform quantizers, which have the simplest quantization structure. Under the setup, a necessary condition and a sufficient condition for stability are derived. In particular, for scalar plants case, the conditions are exact. They coincide with the existing results for nominal plants as a special case and hence generalize them to the uncertain case.

  • Evolutionarily and Neutrally Stable Strategies in Multicriteria Games

    Tomohiro KAWAMURA  Takafumi KANAZAWA  Toshimitsu USHIO  

     
    PAPER-Concurrent Systems

      Vol:
    E96-A No:4
      Page(s):
    814-820

    Evolutionary stability has been discussed as a fundamental issue in single-criterion games. We extend evolutionarily and neutrally stable strategies to multicriteria games. Keeping in mind the fact that a payoff is given by a vector in multicriteria games, we provide several concepts which are coincident in single-criterion games based on partial vector orders of payoff vectors. We also investigate the hierarchical structure of our proposed evolutionarily and neutrally stable strategies. Shapley had introduced concepts such as strong and weak equilibria. We discuss the relationship between these equilibria and our proposed evolutionary stability.

221-240hit(983hit)