The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TIA(1376hit)

1341-1360hit(1376hit)

  • Breast Tumor Classification by Neural Networks Fed with Sequential-Dependence Factors to the Input Layer

    Du-Yih TSAI  Hiroshi FUJITA  Katsuhei HORITA  Tokiko ENDO  Choichiro KIDO  Sadayuki SAKUMA  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E76-D No:8
      Page(s):
    956-962

    We applied an artificial neural network approach identify possible tumors into benign and malignant ones in mammograms. A sequential-dependence technique, which calculates the degree of redundancy or patterning in a sequence, was employed to extract image features from mammographic images. The extracted vectors were then used as input to the network. Our preliminary results show that the neural network can correctly classify benign and malignant tumors at an average rate of 85%. This accuracy rate indicates that the neural network approach with the proposed feature-extraction technique has potential utility in the computer-aided diagnosis of breast cancer.

  • Predictive Analysis of the Differential Rain Attenuation between a Satellite Path and an Adjacent Terrestrial Microwave System

    John D. KANELLOPOULOS  Christos SOFRAS  

     
    PAPER-Antennas and Propagation

      Vol:
    E76-B No:7
      Page(s):
    768-776

    The main propagation effect on interference between a satellite system and an adjacent microwave terrestrial path is the differential rain attenuation. In the present paper, a prediction method for the differential rain attenuation statistics is proposed which is based on a model convective rain-cell structure of the rainfall medium. The assumption that the point rainfall statistics follows a lognormal form is also adopted. The results of the predictive procedure are compared with the only available set of experimental data taken from Yokosuka, Japan. The agreement has been found to be quite reasonable.

  • Synthesis of Testable Sequential Circuits with Reduced Checking Sequences

    Satoshi SHIBATANI  Kozo KINOSHITA  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    739-746

    The test pattern generation for sequential circuits is more difficult than that for combinational circuits due to the presence of memory elements. Therefore we proposed a method for synthesizing sequential circuits with testability in the level of state transition table. The state transition table is augmented by adding extra two inputs so that it possesses a distinguishing sequence, a synchronizing sequence, and transfer sequences of short length. In this case the checking sequence which do a complete verification of the circuit can be test pattern. The checking sequence have been impractical due to the longer checking sequence required. However, in this paper, we have discussed the condition to reduce the length of checking sequence, then by using suitable state assignment codes sequential circuits with much shorter checking sequences can be realized. A heuristic algorithm of the state assignment which reduce the length of checking sequence is proposed and the algorithm and reduced checking sequence are presented with simple example. The state assignment is very simple with the state matrix which represents the state transition. Furthermore some experimental results of automated synthesis for the MCNC Logic Synthesis Workshop finite state machine benchmark set have shown that the state assignment procedure is efficient for reducing checking sequences.

  • Two-Pattern Test Capabilities of Autonomous TGP Circuits

    Kiyoshi FURUYA  Edward J. McCLUSKEY  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    800-808

    A method to analyze two-pattern test capabilities of autonomous test pattern generator (TPG) circuits for use in built-in self-testing are described. The TPG circuits considered here include arbitrary autonomous linear sequential circuits in which outputs are directly fed out from delay elements. Based on the transition matrix of a circuit, it is shown that the number of distinct transitions in a subspace of state variables can be obtained from rank of the submatrix. The two-pattern test capabilities of LFSRs, cellular automata, and their fast parallel implementation are investigated using the transition coverage as a metric. The relationships with dual circuits and reciprocal circuits are also mentioned.

  • Three Dimensional Optical Interconnection Technology for Massively-Parallel Computing Systems

    Kazuo KYUMA  Shuichi TAI  

     
    INVITED PAPER

      Vol:
    E76-C No:7
      Page(s):
    1070-1079

    Three dimensional (3-D) optics offers potential advantages to the massively-parallel systems over electronics from the view point of information transfer. The purpose of this paper is to survey some aspects of the 3-D optical interconnection technology for the future massively-parallel computing systems. At first, the state-of-art of the current optoelectronic array devices to build the interconnection networks are described, with emphasis on those based on the semiconductor technology. Next, the principles, basic architectures, several examples of the 3-D optical interconnection systems in neural networks and multiprocessor systems are described. Finally, the issues that are needed to be solved for putting such technology into practical use are summarized.

  • Improved Forward Test Generation of Sequential Circuits Using Variable-Length Time Frames

    Yuzo TAKAMATSU  Taijiro OGAWA  Hiroshi TAKAHASHI  

     
    LETTER

      Vol:
    E76-D No:7
      Page(s):
    832-836

    In our recent work, a forward test generation method for sequential circuits by using a single time frame was proposed. In order to improve the effectiveness of the method, we introduced an extended mode which can handle the two time frames for a hard-to-test fault and a state escaping phase which can detect a sequence of unsuitable states for test generation. The experimental results show that the improved method is effective in generating higher coverage tests with a small number of tests.

  • Antenna Gain Measurements in the Presence of Unwanted Multipath Signals Using a Superresolution Technique

    Hiroyoshi YAMADA  Yasutaka OGAWA  Kiyohiko ITOH  

     
    PAPER-Antennas and Propagation

      Vol:
    E76-B No:6
      Page(s):
    694-702

    A superresolution technique is considered for use in antenna gain measurements. A modification of the MUSIC algorithm is employed to resolve incident signals separately in the time domain. The modification involves preprocessing the received data using a spatial scheme prior to applying the MUSIC algorithm. Interference rejection in the antenna measurements using the fast Fourier transform (FFT) based techniques have been realized by a recently developed vector network analyzer, and its availability has been reported in the literature. However, response resolution in the time domain of these conventional techniques is limited by the antenna bandwidth. The MUSIC algorithm has the advantage of being able to eliminate unwanted responses when performing antenna measurements in situations where the antenna band-width is too narrow to support FFT based techniques. In this paper, experimental results of antenna gain measurements in a multipath environment show the accuracy and resolving power of this technique.

  • Time Series Analysis Based on Exponential Model Excited by t-Distribution Process and Its Algorithm

    Junibakti SANUBARI  Keiichi TOKUDA  Mahoki ONODA  

     
    PAPER-Digital Signal Processing

      Vol:
    E76-A No:5
      Page(s):
    808-819

    In this paper, a new time series analysis method is proposed. The proposed method uses the exponential (EXP) model. The residual signal is assumed to be identically and independently distributed (IID). To achieve accurate and efficient estimates, the parameter of the system model is calculated by maximizing the logarithm of the likelihood of the residual signal which is assumed to be IID t-distribution. The EXP model theoretically assures the stability of the system. This model is appropriate for analyzing signals which have not only poles, but also poles and zeroes. The asymptotic efficiency of the EXP model is addressed. The optimal solution is calculated by the Newton-Raphson iteration method. Simulation results show that only a small number of iterations are necessary to reach stationary points which are always local minimum points. When the method is used to estimate the spectrum of synthetic signals, by using small α we can achieve a more accurate and efficient estimate than that with large α. To reduce the calculation burden an alternative algorithm is also proposed. In this algorithm, the estimated parameter is updated in every sampling instant using an imperfect, short-term, gradient method which is similar to the LMS algorithm.

  • Some Properties and a Necessary and Sufficient Condition for Extended Kleene-Stone Logic Functions

    Noboru TAKAGI  Kyoichi NAKASHIMA  Masao MUKAIDONO  

     
    PAPER-Logic and Logic Functions

      Vol:
    E76-D No:5
      Page(s):
    533-539

    Recently, fuzzy logic which is a kind of infinite multiple-valued logic has been studied to treat certain ambiguities, and its algebraic properties have been studied by the name of fuzzy logic functions. In order to treat modality (necessity, possibility) in fuzzy logic, which is an important concept of multiple-valued logic, the intuitionistic logical negation is required in addition to operations of fuzzy logic. Infinite multiple-valued logic functions introducing the intuitionistic logical negation into fuzzy logic functions are called Kleene-Stone logic functions, and they enable us to treat modality. The domain of modality in which Kleene-Stone logic functions can handle, however, is too limited. We will define α-KS logic functions as infinite multiple-valued logic functions using a unary operation instead of the intuitionistic logical negation of Kleene-Stone logic functions. In α-KS logic functions, modality is closer to our feelings. In this paper we will show some algebraic properties of α-KS logic functions. In particular we prove that any n-variable α-KS logic function is determined uniquely by all inputs of 7 values which are 7 specific truth values of the original infinite truth values. This means that there is a bijection between the set of α-KS logic functions and the set of 7-valued α-KS logic functions which are restriction of α-KS logic functions to 7 specific truth values. Finally, we show a necessary and sufficient condition for a 7-valued logic function to be a 7-valued α-KS logic function.

  • A Differential-Geometrical Theory of Sensory System --Relations between the Psychophysical, the DL and the JND Functions

    Ryuzo TAKIYAMA  

     
    PAPER-Mathematical Theory

      Vol:
    E76-A No:5
      Page(s):
    683-688

    This paper discusses psychophysical aspects of human sensory system through a differential-geometrical formulation. The discussions reveal relationships among three fundamental functions--the psychophysical, the DL and the JND functions, which characterize sensory system.

  • Sonar-Based Behaviors for a Behavior-Based Mobile Robot

    In So KWEON  Yoshinori KUNO  Mutsumi WATANABE  Kazunori ONOGUCHI  

     
    PAPER

      Vol:
    E76-D No:4
      Page(s):
    479-485

    We present a navigation system using ultrasonic sensors for unknown and dynamic indoor environments. To achieve the robustness and flexibility of the mobile robot, we develop a behavior-based system architecture, consisting of multi-layered behaviors. Basic behaviors required for the navigation of a mobile robot, such as, avoiding obstacles, moving towards free space, and following targets, are redundantly developed as agents and combined in a behavior-based system architecture. An extended potential filed method is developed to produce the appropriate velocity and steering commands for the behaviors of the robot. We demonstrate the capabilities of our system through real world experiments in unstructured dynamic office environments using an indoor mobile robot.

  • Simple Quotient-Digit-Selection Radix-4 Divider with Scaling Operation

    Motonobu TONOMURA  

     
    PAPER

      Vol:
    E76-A No:4
      Page(s):
    593-602

    This paper deals with the theory and design method of an efficient radix-4 divider using carry-propagation-free adders based on redundant binary {-1,0,+1} representation. The usual method of normalizing the divisor in the range [1/2,1) eliminates the advantages of using a higher radix than two, bacause many digits of the partial remainder are required to select the quotient digits. In the radix-4 case, it is shown that it is possible to select the quotient digits to refer to only the four (in the usual normalizing method it is seven) most significant digits of the partial remainder, by scaling the divisor in the range [12/8,13/8). This leads to radix-4 dividers more effective than radix-2 ones. We use the hyperstring graph representation proposed in Ref.(18) for redundant binary adders.

  • Parallel Processing Architecture Design for Two-Dimensional Image Processing Using Spatial Expansion of the Signal Flow Graph

    Tsuyoshi ISSHIKI  Yoshinori TAKEUCHI  Hiroaki KUNIEDA  

     
    PAPER

      Vol:
    E76-A No:3
      Page(s):
    337-348

    In this paper, a methodology for designing the architecture of the processor array for wide class of image processing algorithms is proposed. A concept of spatially expanding the SFG description which enables us to handle the problem as merely one-dimensional signal processing is used in constructing the methodology. Problem of I/O interface which is critical in real-time processing is also considered.

  • A Characterization of Kleene-Stone Logic Functions

    Noboru TAKAGI  Masao MUKAIDONO  

     
    PAPER-Computer Hardware and Design

      Vol:
    E76-D No:2
      Page(s):
    171-178

    Kleene-Stone algebra is both Kleene algebra and Stone algebra. The set of Kleene-Stone logic functions discussed in this paper is one of the models of Kleene-Stone algebra, and they can easily represent the concepts of necessity and possibility which are important concepts for many-valued logic systems. Main results of this paper are that the followings are clarified: a necessary and sufficient condition for a function to be a Kleene-Stone logic function and a formula representing the number of n-variable Kleene-Stone logic functions.

  • Some Properties of Kleene-Stone Logic Functions and Their Canonical Disjunctive Form

    Noboru TAKAGI  Masao MUKAIDONO  

     
    PAPER-Computer Hardware and Design

      Vol:
    E76-D No:2
      Page(s):
    163-170

    In this paper, we will define Kleene-Stone logic functions which are functions F: [0, 1]n[0, 1] including the intuitionistic negation into fuzzy logic functions, and they can easily represent the concepts of necessity and possibility which are important concepts of many-valued logic systems. A set of Kleene-Stone logic functions is one of the models of Kleene-Stone algebra, which is both Kleene algebra and Stone algebra, as same as a set of fuzzy logic functions is one of the models of Kleene algebra. This paper, especially, describes some algebraic properties and representation of Kleene-Stone logic functions.

  • A Minimum Path Decomposition of the Hasse Diagram for Testing the Consistency of Functional Dependencies

    Atsuhiro TAKASU  Tatsuya AKUTSU  

     
    LETTER-Algorithm and Computational Complexity

      Vol:
    E76-D No:2
      Page(s):
    299-301

    An optimal algorithm for decomposing a special type of the Hasse diagram into a minimum set of disjoint paths is described. It is useful for testing the consistency of functional dependencies.

  • Synchrotron Radiation Induced Direct Projection Patterning of Aluminum on Si and SiO2 Surfaces

    Fumihiko UESUGI  Iwao NISHIYAMA  

     
    PAPER-Opto-Electronics Technology for LSIs

      Vol:
    E76-C No:1
      Page(s):
    47-54

    A new direct projection patterning technique of aluminum using synchrotron radiation (SR) is proposed. It is based on the thermal reaction control effect of SR excitation. In the case of the Si surface, pure thermal growth is possible at 200, however, this growth is suppressed perfectly by SR irradiation. On the other hand, Al growth on the SiO2 surface is impossible at the same temperature thermally, however, SR has an effect to initiate thermal reaction. Both new effects of SR, suppression and initiation, are clarified to be caused by atomic order level thin layers formed from CVD gases by SR excitation on the surfaces. By using these effects, the direct inverse and normal projection patterning of Al are successfully demonstrated.

  • Extended Key Management System Using Complementary Exponential Calculation

    Naoya TORII  Takayuki HASEBE  Ryota AKIYAMA  

     
    PAPER

      Vol:
    E76-A No:1
      Page(s):
    78-87

    We propose two types of key management systems that use complementary exponential calculation, in which users in the system divide into groups, and the different modulus numbers are assigned to each group and edges between groups. Key generation information over the modulus numbers is issued to a user by a trusted center. The user who receives the information can generate shared encryption keys between users in the system without using key exchange protocol. In our proposed system, the number of primes is one of the parameters for generating key generation information. The number decreases in inverse proportion to the square of the number of groups compared to the original method. Our proposed technique enabled us to extend the number of users in the system to more than one million, which is not possible with the original method.

  • How to Strengthen DES-like Cryptosystems against Differential Cryptanalysis

    Kenji KOYAMA  Routo TERADA  

     
    PAPER

      Vol:
    E76-A No:1
      Page(s):
    63-69

    We propose a new randomized version of DES in which a key-dependent swapping is used to strengthen DES and DES-like cryptosystems against differential cryptanalysis. This new scheme, called RDES, decreases the probability of success in differential attack by decreasing the characteristic probability. The characteristic is the effect of particular differences in plaintext pairs on the differences in the resultant ciphertext pairs. The characteristic probability for the n-round RDES is 2-n+1 times that for the n-round DES. As for the differential cryptanalysis based on characteristics, the 16-round RDES is as strong as the about 20-round DES. Encryption/decryption speed of n-round RDES is almost the same as that of the n-round DES.

  • Basic Characteristics of a Fractance Device

    Masahiro NAKAGAWA  Kazuyuki SORIMACHI  

     
    PAPER-Nonlinear Phenomena and Analysis

      Vol:
    E75-A No:12
      Page(s):
    1814-1819

    In this work we propose a recursive electric circuit which has a fractal structure composed of resistances and capacitors. It is first confirmed in practice that such a device, which is referred as fractance, possesses a novel characteristics between the constituent elements, or the resistance and the capacitance. That is, the absolute value of the impedance shows such a characteristics as |Z|ω-1/2, whereas the phase angle does such a constant phase property as θ=-π/4 independent of the frequency. As an application of the presently proposed fractance device, we constructed a fractional integral circuit as well as a fractional differential circuit, and confirmed that the observed output wave forms agree well with those derived from a computer simulation.

1341-1360hit(1376hit)