The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TIA(1376hit)

1241-1260hit(1376hit)

  • DS/SS/GMSK with Differential Detection Over Multipath Reyleigh Fading Channels

    Isamu WAKAKI  Takayuki ISHIGURO  Takaya YAMAZATO  Masaaki KATAYAMA  Akira OGAWA  

     
    PAPER

      Vol:
    E79-A No:12
      Page(s):
    1957-1962

    This paper deals with performance evaluation of CDMA based on DS/SS/GMSK signaling with the differential detection over multipath Rayleigh fading channels. To demodulate DS/SS/GMSK signals, we consider differential detection, which does not need a carrier recovery. The bit-error-rate performance is evaluated in the presence of thermal noise and multipleaccess interferences under the multipath Rayleigh fading environment. To improve the performance, we also consider adoption of a RAKE receiver.

  • Construction of Petri Nets from a Given Partial Language

    Susumu HASHIZUME  Yasushi MITSUYAMA  Yutaka MATSUTANI  Katsuaki ONOGI  Yoshiyuki NISHIMURA  

     
    LETTER-Concurrent Systems

      Vol:
    E79-A No:12
      Page(s):
    2192-2195

    This paper deals with the synthesis of Petri nets. Partial languages adequately represent the concurrent behaviors of Petri nets. We first propose a construction problem for Petri nets, in which the objective is to synthesize a Petri net to exhibit the desired behavior specified as a partial language. We next discuss the solvability of this problem and last present the cutline of a solution technique.

  • Device Technology for Monolithic Integration of InP-Based Resonant Tunneling Diodes and HEMTs

    Kevin Jing CHEN  Koichi MAEZAWA  Takao WAHO  Masafumi YAMAMOTO  

     
    PAPER

      Vol:
    E79-C No:11
      Page(s):
    1515-1524

    This paper presents the device technology for monolithic integration of InP-based resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs). The potential of this technology for applications in quantum functional devices and circuits is demonstrated in two integration schemes in which RTDs and FETs are integrated either in Parallel or in series. Based on the parallel integration scheme, we demonstrate an integrated device which exhibits negative differential resistance and modulated peak current. This integrated device forms the foundation of a new category of functional circuits featuring clocked supply voltage. Based on the series integration scheme, resonant-tunneling high electron mobility transistors (RTHEMTs) with novel current-voltage characteristics and useful circuit applications are demonstrated. The high-frequency characteristics of RTHEMTs are also reported.

  • Operation Speed Consideration of Resonant Tunneling Logic Gate Based on Circuit Simulation

    Yutaka OHNO  Shigeru KISHIMOTO  Takashi MIZUTANI  Koichi MAEZAWA  

     
    PAPER

      Vol:
    E79-C No:11
      Page(s):
    1530-1536

    We analyzed the operation speed of the resonant tunneling logic gate, MOBILE, using a simple equivalent circuit model and varying parameters of I-V characteristics and capacitance of RTTs(resonant tunneling transistors). The switching time for large peak-to-valley(P/V)current ratios is smaller at small Vbmax(maximum bias voltage), but larger at large Vbmax than that for small P/V ratios in the case of present I-V characteristics with flat valley current. It is also demonstrated that the MOBILE operation fails if the bias voltage rises too fast, when the capacitance of the load and the driver is different due to the displacement current through the capacitance. These behaviors can be explained by considering the potential diagrams of the circuit.

  • A Partial Scan Design Approach based on Register-Transfer Level Testability Analysis

    Akira MOTOHARA  Sadami TAKEOKA  Mitsuyasu OHTA  Michiaki MURAOKA  

     
    PAPER-Design for Testability

      Vol:
    E79-D No:10
      Page(s):
    1436-1442

    An approach to design for testability using register-transfer level (RTL) partial scan selection is described. We define an RTL circuit model which enables efficient description in an electronic system design automation (ESDA) tool and testability analysis which leads to effective partial scan selection for RTL design including data path circuits and control circuits such as state machines. We also introduced a method of partial scan selection at RTL which selects critical registers and state machines based on RTL testability analysis. DFT techniques using gate level testability measures have been studied and concluded that they are not successful in achieving high fault coverage [15]. However, we started this work for the following reasons, 1) In sequential ATPG procedure, more than two memory elements belonging to a functional units such as registers and state machines are often required to be justified at a time. At RTL, state machines and registers are explicitly described and recognized as functional units while gate level memory elements are scattered over the circuit. 2) As discussed in [6], if the circuit is modified so that the test sequence which causes state transition between initial and final states of sequential ATPG can be easily obtained, ATPG results can be also improved. Complex state machines can be identified at RTL. According to the experimental results, our gate level DFT achieves high fault coverage comparable with the previously published most successful DFT methods, and DFT at RTL resulted in higher fault coverage than gate level DFT at much shorter CPU time.

  • Analysis of Microstrip Line with a Trapezoidal Dielectric Ridge in Multilayered Media by Partial-Boundary Element Method

    Keren LI  Kazuhiko ATSUKI  

     
    PAPER

      Vol:
    E79-C No:10
      Page(s):
    1413-1419

    In this paper, we present an analysis of microstrip line with a trapezoidal dielectric ridge in multilayered media. The method employed in this characterization is called partial-boundary element method (p-BEM) which provides an efficient technique to the analysis of the structures with multilayered media. To improve the convergence of the Green's function used in the analysis with the P-BEM, we employ a technique based on a combination of the Fourier series expansion and the method of images. Treatment on convergence for the boundary integrals is also described. After this treatment, it requires typically one tenth or one hundredth of Fourier terms to obtain the same accuracy compared with the original Green's function. Numerical results are presented for two microstrip lines that have a trapezoidal dielectric ridge placed on a one-layered substrate and a two-layered substrate. These numerical results demonstrate the effects on the characteristics of the microstrip line due to the existence of the dielectric ridge as well as the second layer between the ridge and the fundamental substrate.

  • A New Short-Time DFT FSK Demodulation Method for LEO Satellite Communications Systems

    Attapol WANNASARNMAYTHA  Shinsuke HARA  Norihiko MORINAGA  

     
    PAPER-Satellite Communication

      Vol:
    E79-B No:10
      Page(s):
    1592-1597

    This paper presents a new Frequency Shift Keying (FSK) demodulation method using the Short Time-Discrete Fourier Transform (ST-DFT) analysis to combat large frequency offset with time variation in low earth orbit (LEO) satellite communications systems. This demodulation method can demodulate the received signal only by searching for the instantaneous spectrum energy peaks without complicated carrier recovery. In addition, it is insensitive to the signal-to-noise ratio (SNR) degradation caused by the excessively wide bandwidth of the receiver front-end band pass filter. Furthermore, the ST-DFT analysis combined with a differential encoding scheme gives FSK demodulation method a potential robustness against large and fast time-varying frequency offset.

  • Performance Analysis of Modified/Quadrature Partial Response-Trellis Coded Modulation (M/QPR-TCM) Systems

    Osman Nuri UCAN  

     
    PAPER-Mobile Communication

      Vol:
    E79-B No:10
      Page(s):
    1570-1576

    In this paper partial response signalling and trellis coded modulation are considered together to improve bandwidth efficiency and error performance for M-QAM and denoted as Modified/Quadrature Partial Response-Trellis Coded Modulation (M/QPR-TCM) and two new non-catastrophic schemes M/6QPR-TCM and M/9QPR-TCM are introduced for 4QAM. In colored noise with correlation coefficient less than zero, the proposed schemes perform better than in AWGN case. Another interesting result is that when the combined system is used on a Rician fading channel, the bit error probability upper bounds of the proposed systems are better than their counterparts the 4QAM-TCM systems with 2 and 4 states, respectively, for SNR values greater than a threshold, which have the best error performance in the literature.

  • An Efficient Wireless Voice/Data Integrated Access Algorithm in Noisy Channel Environments

    Byung Chul KIM  Chong Kwan UN  

     
    PAPER-Network architecture, signaling and protocols for PCS

      Vol:
    E79-B No:9
      Page(s):
    1394-1404

    In this paper, an efficient voice/data integrated access algorithm for future personal communication networks (PCNs) is proposed and analyzed based on an equilibrium point analysis (EPA) method. A practical wireless communication channel may be impaired by noise and multipath distortion, and thus corrupted real-time packets have to recompete immediately in order to be transmitted within the stringent delay constraint. Also, real-time traffic users have to transmit their packets irrespective of the amount of non real-time data messages so that heavy non real-time traffic does not degrade the quality of real-time traffic. In the proposed algorithm, request subslots are distributed in the beginning of every slot to reduce access delay of real-time traffic. Moreover, slots are assigned to real-time traffic first and the remaining idle slots are assigned later to non real-time traffic by using the scheme of contention separation. We analyze the throughput and delay characteristics of this system based on an EPA mothod, and validate their performances by simulations. This scheme can support different quality of services (QoSs) imposed by different services efficiently and show good quality of real-time traffic, especially voice packets, no matter how heavy non real-time traffic is.

  • On the Kernel MUSIC Algorithm with a Non-Redundant Spatial Smoothing Technique

    Hiroshi SHIMOTAHIRA  Fumie TAGA  

     
    PAPER

      Vol:
    E79-A No:8
      Page(s):
    1225-1231

    We propose the Kernel MUSIC algorithm as an improvement over the conventional MUSIC algorithm. This algorithm is based on the orthogonality between the image and kernel space of an Hermitian mapping constructed from the received data. Spatial smoothing, needed to apply the MUSIC algorithm to coherent signals, is interpreted as constructing procedure of the Hermitian mapping into the subspace spanned by the constituent vectors of the received data. We also propose a new spatial smoothing technique which can remove the redundancy included in the image space of the mapping and discuss that the removal of redundancy is essential for improvement of resolution. By computer simulation, we show advantages of the Kernel MUSIC algorithm over the conventional one, that is, the reduction of processing time and improvement of resolution. Finally, we apply the Kernel MUSIC algorithm to the Laser Microvision, an optical misroscope we are developing, and verify that this algorithm has about two times higher resolution than that of the Fourier transform method.

  • Proposal of the Fast Kernel MUSIC Algorithm

    Fumie TAGA  Hiroshi SHIMOTAHIRA  

     
    PAPER

      Vol:
    E79-A No:8
      Page(s):
    1232-1239

    It is an important problem in fields of radar, sonar, and so on to estimate parameters of closely spaced multiple signals. The MUSIC algorithm with the forward-backward (FB) spatial smoothing is considered as the most effective technique at present for the problem with coherent signals in a variety of fields. We have applied this in Laser Microvision. Recently, Shimotahira has proposed the Kernel MUSIC algorithm, which is applicable to cases when signal vectors and noise vectors are orthogonal. It also utilizes Gaussian elimination of the covariance matrix instead of eigenvalue analysis to estimate noise vectors. Although the amount of computation by the Kernel MUSIC algorithm became lighter than that of the conventional MUSIC algorithm, the covariance matrix was formed to estimate noise vectors and also all noise vectors were used to analyze the MUSIC eigenspectrum. The heaviest amount of computation in the Kernel MUSIC algorithm exists in the transformation of the covariance matrix and the analysis of the MUSIC eigenspectrum. We propose a more straightforward algorithm to estimate noise vectors without forming a covariance matrix, easier algorithm to analyze the MUSIC eigenspectrum. The superior characteristics will be demonstrated by results of numerical simulation.

  • Image Restoration by Spatial Clustering

    Hiroto SHINGAI  Hiroyuki MATSUNAGA  Kiichi URAHAMA  

     
    LETTER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E79-D No:7
      Page(s):
    1000-1003

    A method based on clustering is presented for restoring and segmenting gray scale images. An optimum clustering obtained by a gradient method gives an image with gray scale values which vary smoothly in each segmented region. The method is also applied to restoration from sparsely sampled data.

  • Necessary and Sufficient Condition for Absolute Exponential Stability of Hopfield-Type Neural Networks

    Xue-Bin LIANG  Toru YAMAGUCHI  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E79-D No:7
      Page(s):
    990-993

    A main result in this paper is that for a Hopfield-type neural circuit with a symmetric connection matrix T, the negative semidenfiniteness of T is a necessary and sufficient condition for absolute exponential stability. While this result extends one of absolute stability in Forti, et al. [1], its proof given in this paper is simpler, which is completed by an approach different from one used in Forti et al. [1]. The most significant consequence is that the class of neural networks with negative semidefinite matrices T is the largest class of symmetric networks that can be employed for embedding and solving optimization problem with global exponential rate of convergence to the optimal solution and without the risk of spurious responses.

  • Theoretical Study of Alpha-Particle-lnduced Soft Errors in Submicron SOI SRAM

    Yoshiharu TOSAKA  Kunihiro SUZUKI  Shigeo SATOH  Toshihiro SUGII  

     
    PAPER-Static RAMs

      Vol:
    E79-C No:6
      Page(s):
    767-771

    The effects of α-particle-induced parasitic bipolar current on soft errors in submicron 6-transistor SOI SRAMs were numericaly studied. It was shown that the bipolar current induces soft errors and that there exists a critical quantity which determines the soft error occurrence in the SOI SRAMs. Simulated soft error rates were in the same order as those for bulk SRAMs.

  • Flexible VLSI Architecture for Block-Matching Motion Estimation

    Han-Kyu LEE  Jae-Yeal NAM  Jin-Soo CHOI  Yeong-Ho HA  

     
    PAPER

      Vol:
    E79-D No:6
      Page(s):
    752-758

    Full-search block-matching motion estimation is a popular method to reduce temporal redundancies in video sequence. Due to its excessive computational load, parallel processing architectures are often required for real-time processing. One of the architectures is Hsieh's architecture based on systolic array processor and shift register arrays. Serial input characteristic of his scheme can reduce the number of pixel inputs to one, at the expense of significantly increasing the initialization time. This paper presents a modified and generalized Hsieh's architecture to reduce the initialization time. The proposed architecture can easily control data flows by rearranging shift register arrays and input-pin counts by using multiplexers on input stage, while retaining good properties of Hsieh's. The proposed architecture has the following advantages: (1) it allows controllable data inputs to save the pin counts, (2) it is flexible to the dimensional change of the search area via simple control, (3) it can operate in real time for video conference applications, and (4) it has simple and modular structure which is quite suitable for VLSI implementation. For verification of the proposed architecture, VHDL simulations are performed and some results are given.

  • A Half-Chip Offset QPSK Modulation CDMA Scheme Employing Differential Detection for Advanced Wireless LAN Systems

    Takatoshi SUGIYAMA  Masato MIZOGUCHI  Shuji KUBOTA  

     
    PAPER-Radio Communication

      Vol:
    E79-B No:5
      Page(s):
    693-700

    This paper proposes a half-chip offset QPSK (Quadrature Phase Shift Keying) modulation CDMA (Code Division Multiple Access) scheme to allow the simple differential detection while realizing a compact spectrum in nonlinear channels for wireless LAN systems. The experimental results show the proposed scheme achieves excellent Pe (probability of error) performances in ACI (adjacent channel interference) and CCI (co-channel interference) environments. Moreover, by employing time diversity and high-coding-gain FEC (Forward Error Correction), the half-chip offset QPSK-CDMA scheme realizes an improvement of 3.0 dB (in terms of Eb/No at a Pe of 105) in Rician fading environments with a Doppler frequency fD of 10 Hz and a delay spread of 40 nsec.

  • Source Localization with Network Inversion Using an Answer-in-Weights Scheme

    Takehiko OGAWA  Keisuke KAMEYAMA  Roman KUC  Yukio KOSUGI  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E79-D No:5
      Page(s):
    608-619

    A new neural network for locating a source by integrating data from a number of sensors is considered. The network gives a solution for inverse problems using a back-propagation algorithm with the architecture to get the solution in the inter-layer weights in a coded form Three different physical quantities are applied to the network, since the scheme has three independent ports; an input port, a tutorial port and an answer port. Our architecture is useful to estimate z" in the problem whose structure is y=f(x,z) where y is the observed data, x is the sensor position and z is the source location. The network integrates the information obtained from a number of sensors and estimates the location of the source. We apply the network to two problems of location estimation: the localization of the active nerves from their evoked potential waveforms and the localization of objects from their echoes using an active sonar system.

  • Visualization of Temporal and Spatial Information in Natural Language Descriptions

    Hiromi BABA  Tsukasa NOMA  Naoyuki OKADA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E79-D No:5
      Page(s):
    591-599

    This paper discusses visualization of temporal and spatial information in natural language descriptions (NLDs), focusing on the translation process of intermediate representations of NLDs to proper scenarios" and environments" for animations. First, the intermediate representations are shown according to the idea of actors. Actors and non-actors are represented as primitives of objects, whereas actions as those of events. Temporal and spatial constraints by a given NLD text are imposed upon the primitives. Then, the representations containing unknown temporal or spatial parameters --time and coordinates-- are translated into evaluation functions, where the unlikelihood of the deviations from the predicted temporal or spatial relations are estimated. Particularly, the functions concerning actor's movements contain both temporal and spatial parameters. Next, the sum of all the evaluation functions is minimized by a nonlinear optimization method. Thus, the most proper actors' time-table, or scenario, and non-actors' location-table, or environment, for visualization are obtained. Implementation and experiments show that both temporal and spatial information in NLDs are well connected through actors' movements for visualization.

  • Study of a Low Voltage, Low Power and High Frequency CMOS VCO Circuit

    Yasuhiro SUGIMOTO  Takaaki TSUJI  

     
    LETTER

      Vol:
    E79-A No:5
      Page(s):
    630-633

    This paper examines the feasibility of a high frequency (moro than 1 GHz) ring-oscillator-type CMOS VCO, able to maintain a good linearity between the oscillator output frequency and control voltage, while preserving low voltage and low power operation capabilities. A CMOS VCO circuit, with a newly developed corrent-controlled delay cell and an architecture combining the transitions of each delay cell output, with high-frequency operation, was designed and simulated using the CMOS 0.6 µm device paramenters. We analyzed the generation of unnecessary harmonics and sub-harmonics when a delay cell's propagation delay time varied. The simulation indicated that a CMOS VCO with a frequency range of 200 MHz to 1.4 GHz, a power dissipation of 8.5 mW at 900 MHz from a 3 V power supply, and an operation voltage of 1 V to 3 V can be implemented on a chip.

  • On Multiple-Valued Logical Functions Realized by Asynchronous Sequential Circuits

    Hisashi SATO  

     
    PAPER

      Vol:
    E79-A No:4
      Page(s):
    513-519

    This paper concerns multiple-valued logical function realized by asynchronous circuit that may have feed-back loops and its completeness problems. The first aim is to give mathematical definition of an asynchronous circuit over multiple-valued logical functions and of the realization of multiple-valued logical function by means of an asynchronous circuit. For asynchronous element, the definition of circuit construction and initialization are very sensitive. A slight modification may have a considerable influence on the completeness. We consider three types of completeness (LF-, GS-, NS-completeness) for a set of multiple-valued logical functions. The LF-completeness means completeness of logical functions realized loop-free cirucit. The GS-completeness means completeness under general initialization assumption. The NS-completeness measn completeness under initialization by input assumption. The second aim is to give a completeness criterion for each type of completeness. This aim is realized for LF-completeness in general case and GS-completeness in ternary case. A completeness criteria for GS-completeness and NS-completeness are given under strong conditions.

1241-1260hit(1376hit)