The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

29061-29080hit(30728hit)

  • Single-Mode Separation for Mode-Division Multiplexing by Holographic Filter

    Manabu YOSHIKAWA  Kazuyuki KAMEDA  

     
    LETTER-Opto-Electronics

      Vol:
    E77-C No:9
      Page(s):
    1526-1527

    Mode separation of a multiplex mode in a mode-division multiplexing system is studied. The clear, desired single-mode pattern, which is separated from the multiplex mode by using a holographic filter, is observed in the experiment.

  • Fast Convergent Genetic-Type Search for Multi-Layered Network

    Shu-Hung LEUNG  Andrew LUK  Sin-Chun NG  

     
    PAPER-Neural Networks

      Vol:
    E77-A No:9
      Page(s):
    1484-1492

    The classical supervised learning algorithms for optimizing multi-layered feedforward neural networks, such at the original back-propagation algorithm, suffer from several weaknesses. First, they have the possibility of being trapped at local minima during learning, which may lead to failure in finding the global optimal solution. Second, the convergence rate is typically too slow even if the learning can be achieved. This paper introduces a new learning algorithm which employs a genetic-type search during the learning phase of back-propagation algorithm so that the above problems can be overcome. The basic idea is to evolve the network weights in a controlled manner so as to jump to the regions of smaller mean squared error whenever the back-propagation stops at a local minimum. By this, the local minima can always be escaped and a much faster learning with global optimal solution can be achieved. A mathematical framework on the weight evolution of the new algorithm in also presented in this paper, which gives a careful analysis on the requirements of weight evolution (or perturbation) during learning in order to achieve a better error performance in the weights between different hidden layers. Simulation results on three typical problems including XOR, 3-bit parity and the counting problem are described to illustrate the fast learning behaviour and the global search capability of the new algorithm in improving the performance of back-propagated network.

  • Heavy p- and n-type Doping with Si on (311)A GaAs Substrates by Molecular Beam Epitaxy

    Kenichi AGAWA  Yoshio HASHIMOTO  Kazuhiko HIRAKAWA  Noriaki SAKAMOTO  Toshiaki IKOMA  

     
    PAPER

      Vol:
    E77-C No:9
      Page(s):
    1408-1413

    We have systematically studied the characteristics of Si doping in GaAs grown on (311)A GaAs substrates by molecular beam epitaxy. The growth temperature dependence of Si doping has been investigated. It is found that the conduction-type sharply changes from p-type to n-type with decreasing growth temperature at a critical temperature of 430-480. The highest hole density obtained for uniformly doped layers was 1.51020 cm-3, while for δ-doped layers the sheet hole density as high as 2.61013 cm-2 was achieved. This is the highest hole density ever reported for δ-doped GaAs.

  • Graphical Analysis for k-out-of-n: G Repairable System and Its Application

    Ikuo ARIZONO  Akihiro KANAGAWA  

     
    LETTER-Algorithms, Data Structures and Computational Complexity

      Vol:
    E77-A No:9
      Page(s):
    1560-1563

    Kumar and Billinton have presented a new technique for obtaining the steady-state probabilities from a flow graph based on Markov model. By examining the graph and choosing suitable input and output nodes, the steady-state probabilities can be obtained directly by using the flow graph. In this paper this graphical technique is applied for a k-out-of-n: G repairable system. Consequently a new derivation way of the formulae for the steady-state availability and MTBF is obtained.

  • Stability Conditions of Terminated Two-Port Networks

    Yoshihiro MIWA  

     
    LETTER-Microwave and Millimeter Wave Technology

      Vol:
    E77-C No:9
      Page(s):
    1528-1531

    The stability of a terminated two-port network is investigated, and the stability conditions with only one inequality are obtained. Furthermore, the stability conditions with two inequalities, which are in the same form as those for the passive terminations known at the present time, are also obtained.

  • A Subband Adaptive Filtering Algorithm with Adaptive Intersubband Tap-Assignment

    Akihiko SUGIYAMA  Akihiro HIRANO  

     
    PAPER-Adaptive Digital Filters

      Vol:
    E77-A No:9
      Page(s):
    1432-1438

    This paper proposes a new subband adaptive filtering algorithm for adaptive FIR filters. The number of taps for each subband filter is adaptively controlled based on a sum of the absolute coefficients or the coefficient power in conjunction with the subband signal power. Keeping the total number of taps constant, redundant taps are redistributed to subbands where the number of taps is insufficient. Simulation results with a white signal show that the number of taps in each subband approaches an optimum as each subband filter converges. For a colored signal, tap assignment by the new algorithm is as stable as for a white signal.

  • Shape and Reflectance of a Polyhedron from Interreflections by Two-Image Photometric Stereo

    Jun YANG  Noboru OHNISHI  Noboru SUGIE  

     
    LETTER

      Vol:
    E77-D No:9
      Page(s):
    1017-1021

    In this paper, we extend two-image photometric stereo method to treat a concave polyhedron, and present an iterative algorithm to remove the influence of interreflections. By the method we can obtain the shape and reflectance of a concave polyhedron with perfectly diffuse (Lambertian) and unknown constant reflectance. Both simulation and experiment show the feasibility and accuracy of the method.

  • The Improvement of Compositional Distribution in Depth and Surface Morphology of YBa2Cu3O7-δ-SrTiOx Multilayers

    Chien Chen DIAO  Gin-ichiro OYA  

     
    PAPER-HTS

      Vol:
    E77-C No:8
      Page(s):
    1209-1217

    Almost stoichiometric YBa2Cu3O7-δ(110) or (103) and SrTiOx(110) films, and multilayer films consisting of them have successfully been grown epitaxially on hot SrTiO3 substrates by 90off-axis rf magnetron sputtering with facing targets. Their whole composition, compositional distribution in depth, crystallinity and surface morphology were examined by inductively coupled plasma spectroscopy, Auger electron spectroscopy, reflection high-energy electron diffraction, and scanning tunneling microscopy or atomic force microscope, respectively. When any YBa2Cu3O7-δ film was exposed to air after deposition, a Ba-rich layer was formed in a near surface region of the film. However, such a compositional distribution in depth of the film was improved by in situ deposition of a SrTiOx film on it. Moreover, the surface roughness of the YBa2Cu3O7-δ film was improved by predeposition of a SrTiOx film under it. On the basis of these results, both YBa2Cu3O7-δ/SrTiOx/YBa2Cu3O7-δ/SrTiO3(sub.) and YBa2Cu3O7-δ/SrTiOx/YBa2Cu3O7-δ/SrTiOx/SrTiO3(sub.) multilayer films with average surface roughness of 3 nm were grown reproducibly, which had uniform compositional distribution throughout the depth of the film except a near surface region of the top YBa2Cu3O7-δ layer. A new 222 structure described by Sr8Ti8O20 (Sr2Ti2O5) with a long range ordered arrangement of oxygen vacancies was formed in the SrTiOx films deposited epitaxially on YBa2Cu3O7-δ films.

  • A New Recursive Method for the Mean Waiting Time in a Polling Network with Gated General Order Service

    Chung-Ju CHANG  Lain-Chyr HWANG  

     
    PAPER-Communication Networks and Service

      Vol:
    E77-B No:8
      Page(s):
    985-991

    A new recursive method for obtaining the mean waiting time in a polling system with general service order and gated service discipline is proposed. The analytical approach used to obtain the mean waiting time is via an imbedded Markov chain and a new recursive method is used to obtain the moments of pseudocycle time which are parameters in the formula for the mean waiting time. This method is computationally tractable, so the analytical results can cover a wide range of applications. Simulations are also conducted to verify the validity of the analysis.

  • A Resistor Coupled Josephson Polarity-Convertible Driver

    Shuichi NAGASAWA  Shuichi TAHARA  Hideaki NUMATA  Yoshihito HASHIMOTO  Sanae TSUCHIDA  

     
    PAPER-LTS

      Vol:
    E77-C No:8
      Page(s):
    1176-1180

    A polarity-convertible driver is necessary as a basic component of several Josephson random access memories. This driver must be able to inject a current having positive or negative polarity into a load transmission line such as a word or bit line of the RAM. In this paper, we propose a resistor coupled Josephson polarity-convertible driver which is highly sensitive to input signals and has a wide operating margin. The driver consists of several Josephson junctions and several resistors. The input signal is directly injected to the driver through the resistors. The circuit design is discussed on the operating principle of the driver. The driver is fabricated by 1.5 µm Nb technology with Nb/AlOx/Nb Josephson junctions, two layer Nb wirings, an Nb ground plane, Mo resistors, and SiO2 insulators. The Nb/AlOx/Nb Josephson junctions are fabricated using technology refined for sub-micron size junctions. The insulators between wirings are formed using bias sputtering technique to obtain good step coverage. The driver circuit size is 53 µm34 µm. Measurements are carried out at 10 kHz to quasistatically test the polarity-convertible function and the operating margin of the driver. Proper polarity-convertible operation is confirmed for a large operating bias margin of 70% at a fairly small input current of 0.3 mA.

  • Analysis of an Open-Ended Waveguide as a Probe for Near Field Antenna Measurements by Using TLM Method

    Yoshiyuki FUJINO  Cheuk-yu Edward TONG  

     
    PAPER-Antennas and Propagation

      Vol:
    E77-B No:8
      Page(s):
    1048-1055

    To increase the accuracy of a near field antenna measurement system, it is necessary to know radiation characteristics of a probe to detect near field data. Open ended waveguide used as a near field probe in our system was analyzed using Transmission Line Matrix (TLM) method which is a time domain electromagnetic solver. Validity of this analysis has been confirmed by comparison with experimental data and existing theoretical approximation. Frequency dependence of a complex reflection coefficient at the waveguide aperture has been derived and is shown to agree with measured values. The radiation pattern of the open ended waveguide with mounting structure is also calculated. Ripples on both the amplitude and phase patterns are correctly predicted by our simulation. This method can be applied to accurately model the effect of probe antennas to enhance the accuracy of near field antenna range.

  • A Method to Interpret 3D Motions Using Neural Network

    Akira WATANABE  Nobuyuki YAZAWA  Arata MIYAUCHI  Minami MIYAUCHI  

     
    PAPER

      Vol:
    E77-A No:8
      Page(s):
    1363-1370

    In computer vision, the interpretation of 3D motion of an object in the physical world is an important task. This study proposes a 3D motion interpretation method which uses a neural network system consisting of three kinds of neural networks. This system estimates the solutions of 3D motion of an object by interpreting three optical flow (OF-motion vector field calculated from images) patterns obtained at the different view points for the same object. In the system, OF normalization network is used to normalize diverse OF patterns into the normalized OF format. Then 2D motion interpretation network is used to interpret the normalized OF pattern and to obtain the object's projected motion onto an image plane. Finally, 3D motion interpretation network totally interprets the three sets of the projected motions and it derives the solutions of the object's 3D motion from the inputs. A complex numbered version of the back-propagation (Complex-BP) algorithm is applied to OF normalization netwerk and to 2D motion interpretation network, so that these networks can learn graphical patterns as complex numbers. Also a 3D vector version of the back-propagation (3DV-BP) algorithm is applied to 3D motion interpretation network so that the network can learn the spatial relationship between the object's 3D motion and the corresponding three OF patterns. Though the interpretation system is trained for only basic 3D motions consisting of a single motion component, the system can interpret unknown multiple 3D motions consisting of several motion components. The generalization capacity of the proposed system was confirmed using diverse test patterns. Also the robustness of the system to noise was probed experimentally. The experimental results showed that this method has suitable features for applying to real images.

  • Performance of a Modified Symbol-Rate-Increased TC-2mQAM

    Hirokazu TANAKA  Tomoto K. MATSUSHIMA  

     
    LETTER

      Vol:
    E77-A No:8
      Page(s):
    1378-1380

    In this paper, trellis coded modulation with bandwidth expansion is examined. The proposed scheme is a modified Symbol-rate-increased TCM [3]-[5], which allows the bandwidth expansion ratio to be varied to an arbitrary value. The Symbol-rate-increased TCM has been shown to be a particular case of the proposed scheme. Simulation results have clarified that the proposed scheme achieves a significant improvement over an uncoded scheme in an AWGN channel.

  • Highly Reliable Flash Memories Fabricated by in-situ Multiple Rapid Thermal Processing

    Takahisa HAYASHI  Yoshiyuki KAWAZU  Akira UCHIYAMA  Hisashi FUKUDA  

     
    PAPER-Non-volatile Memory

      Vol:
    E77-C No:8
      Page(s):
    1270-1278

    We propose, for the first time, highly reliable flash-type EEPROM cell fabrication using in-situ multiple rapid thermal processing (RTP) technology. In this study, rapid thermal oxynitridation tunnel oxide (RTONO) film formations followed by in-situ arsenic (As)-doped floating-gate polysilicon growth by rapid thermal chemical vapor deposition (RTCVD) technologies are fully utilized. The results show that after 5104 program/erase (P/E) endurance cycles, the conventional cell shows 65% narrowing of the threshold voltage (Vt) window, whereas the RTONO cell indicates narrowing of less than 20%. A large number of nitrogen atoms (1020 atoms/cm3) are confirmed by secondary ion mass spectrometry (SIMS), pile up at the SiO2/Si interface and distribute into bulk SiO2. It is considered that in the RTONO film stable Si-N bonds are formed which minimize electron trap generation as well as the neutral defect density, resulting in lower Vt shifts in P/E stress. In addition, the RTONO film reduces the number of hydrogen atoms because of final N2O oxynitridation. The SIMS data shows that by the in-situ RTCVD process As atoms (91020 atoms/cm3) are incorporated uniformly into 1000--thick film. Moreover, the RTCVD polysilicon film indicates an extremely flat surface. The time-dependent dielectric breakdown (TDDB) characteristics of interpoly oxide-nitride-oxide (ONO) film exhibited no defect-related breakdown and 5 times longer breakdown time as compared to phosphorus-doped polysilicon film. Therefore, the flash-EEPROM cell fabricated has good charge storing capability.

  • Stochastic Signal Processing for Incomplete Observations under the Amplitude Limitations in Indoor and Outdoor Sound Environments Based on Regression Analysis

    Noboru NAKASAKO  Mitsuo OHTA  Hitoshi OGAWA  

     
    PAPER

      Vol:
    E77-A No:8
      Page(s):
    1353-1362

    A specific signal in most of actual environmental systems fluctuates complicatedly in a non-Gaussian distribution form, owing to various kinds of factors. The nonlinearity of the system makes it more difficult to evaluate the objective system from the viewpoint of internal physical mechanism. Furthermore, it is very often that the reliable observation value can be obtained only within a definite domain of fluctuating amplitude, because many of measuring equipment have their proper dynamic range and the original random wave form is unreliable at the end of amplitude fluctuation. It becomes very important to establish a new signal processing or an evaluation method applicable to such an actually complicated system even from a functional viewpoint. This paper describes a new trial for the signal processing along the same line of the extended regression analysis based on the Bayes' theorem. This method enables us to estimate the response probability property of a complicated system in an actual situation, when observation values of the output response are saturated due to the dynamic range of measuring equipment. This method utilizes the series expansion form of the Bayes' theorem, which is applicable to the non-Gaussian property of the fluctuations and various kinds of correlation information between the input and output fluctuations. The proposed method is newly derived especially by paying our attention to the statistical information of the input-output data without the saturation operation instead of that on the resultantly saturated observation, differing from the well-known regression analysis and its improvement. Then, the output probability distribution for another kind of input is predicted by using the estimated regression relationship. Finally, the effectiveness of the proposed method is experimentally confirmed too by applying it to the actual data observed for indoor and outdoor sound environments.

  • Performance Analysis of Multi-Pulse Pulse Position Modulation (MPPM) in Noisy Photon Counting Channel

    Tomoaki OHTSUKI  Iwao SASASE  Shinsaku MORI  

     
    LETTER

      Vol:
    E77-A No:8
      Page(s):
    1381-1386

    We analyze the error probability performance of multi-pulse pulse position modulation (MPPM) in noisy photon counting channel. Moreover we investigate the error perofrmance of convolutional coded MPPM and RS coded MPPM in noisy photon counting channel. We define a distance between symbols as the number of nonoverlapping pulses in one symbol, and by using the distance we analyze the error performance of MPPM in noisy photon counting channel. It is shown that MPPM has better performance than PPM in the error probability performance in noisy photon counting channel. For PPM in noisy photon counting channel, convolutional codes are more effective than RS codes to reduce the average transmitting power. For MPPM in noisy photon counting channel, however, RS codes are shown to be more effective than convolutional codes.

  • Efficient Cryptosystems over Elliptic Curves Based on a Product of Form-Free Primes

    Hidenori KUWAKADO  Kenji KOYAMA  

     
    PAPER

      Vol:
    E77-A No:8
      Page(s):
    1309-1318

    This paper proposes RSA-type cryptosystems over elliptic curves En(O, b) and En(a, O),where En(a, b): y2 x3+ax+b (mod n),and n is a product of from-free primes p and q. Although RSA cryptosystem is not secure against a low exponent attack, RSA-type cryptosystems over elliptic curves seems secure against a low multiplier attack. There are the KMOV cryptosystem and the Demytko cryptosystem that were previously proposed as RSA-type cryptosystems over elliptic curves. The KMOV cryptosystem uses form-restricted primes as p q 2(mod 3)or p q 3(mod 4), and encrypts/decrypts a 2log n-bit message over varied elliptic curves by operating values of x and y coordinates. The Demytko cryptosystem, which is an extension of the KMOV cryptosystem, uses form-free primes, and encrypts/decrypts a log n-bit message over fixed elliptic curves by operating only a value of x coordinates. Our cryptosystems, which are other extensions fo the KMOV cryptosystem, encrypt/decrypt a 2log n-bit message over varied elliptic curves by operating values of x and y coordinates. The Demytko cryptosystem and our cryptosystems have higher security than the KMOV cryptosystem because from-free primes hide two-bit information about prime factors. The encryption/decryption speed in one of our cryptosystems is about 1.25 times faster than that in the Demytko cryptosystem.

  • A Secure Broadcast Communication Method with Short Messages

    Masahiro MAMBO  Akinori NISHIKAWA  Eiji OKAMOTO  Shigeo TSUJII  

     
    PAPER

      Vol:
    E77-A No:8
      Page(s):
    1319-1327

    Broadcasting with secrecy of messages is important in a situation such as pay television. In pay television only a broadcasting station broadcasts a message. On the other hand, broadcast communication is also important. Broadcast communication means any user in a whole group can broadcast a message to any subset of the group. In this paper the efficiency of secure broadcast communication is discussed in terms of the length of messages sent and the encryption speed. We prove that the length of the broadcast messages is not kept less than O(n), where n is the number of receivers, when a broadcast system has a form of a single system which is defined as the generalized form of an individual key method and a master key method. In contrast, the proposed secure broadcast communication method, a multi-dimension method, keeps the length of messages sent O(mmn), where m is the number of the dimension used in the multi-dimension method. At the same time the encryption speed was reduced from O(n(log(n+C2)+C3)) of the master key method to O(mn(logmn+C1)) of the multi-dimension method.

  • Multi-Fiber Linear Lightwave Networks--Design and Implementation Issues--

    Po-Choi WONG  Kin-Hang CHAN  

     
    PAPER-Optical Communication

      Vol:
    E77-B No:8
      Page(s):
    1040-1047

    Linear lightwave networks (LLNs) are optical networks in which network nodes perform only linear operations on optical signals: power splitting, combining, and non-regenerative amplification. While previous efforts on LLNs assume only one fiber per link, we consider a multi-fiber linear lightwave network (M-LLN) architecture for telecommunications where switching exchanges are normally connected by multi-fiber cables. We propose a class of linear path (LP) allocation schemes for establishing optical paths in M-LLNs, and show that they have a better performance than those proposed for single-fiber LLNs. We show that M-LLNs can be implemented with commercially available components, and discuss the implementation issues in detail.

  • Frequency Domain Migration for Subsurface Radar Considering Variations in Propagation Velocity

    Gwangsu HO  Akira KAWANAKA  Mikio TAKAGI  

     
    PAPER-Electronic and Radio Applications

      Vol:
    E77-B No:8
      Page(s):
    1056-1063

    The techniques for imaging optically opaque region using an electromagnetic wave radar are being developed. One important application of these techniques is the detection of buried pipes and cables. The image quality of subsurface radar often becomes low because the electromagnetic waves are affected by the attenuation and inhomogeneity of soil. Hence, a method which improves the quality of the radar images has been required. The migration method is utilized in reflective seismic processing and is derived based on the solution of the wave equation represented in spatial frequency domain. It is classified into the F-K and the phase-shift (P-S) migration method. The former is derived on the assumption that propagation velocity of the wave is uniform in the soil while the latter is assumed that the propagation velocity is varying depending on the depth from the ground surface. The P-S method gives relatively good quality images but it requires very long computation time. In this paper, we propose the block migration method in which the F-K method is applied to the divided image blocks with local propagation velocity. In order to solve a problem concerning the connection between the contiguous blocks we present two approaches which are the processings using the overlapped regions and the Lapped Orthogonal Transform (LOT). Some experimental results point out that the block migration method has a good capability of improving the image quality and the processing time using LOT becomes one tenth in comparison with the P-S method.

29061-29080hit(30728hit)