The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30808hit)

28821-28840hit(30808hit)

  • Equivalence between Some Dynamical Systems for Optimization

    Kiichi URAHAMA  

     
    LETTER-Optimization Techniques

      Vol:
    E78-A No:2
      Page(s):
    268-271

    It is shown by the derivation of solution methods for an elementary optimization problem that the stochastic relaxation in image analysis, the Potts neural networks for combinatorial optimization and interior point methods for nonlinear programming have common formulation of their dynamics. This unification of these algorithms leads us to possibility for real time solution of these problems with common analog electronic circuits.

  • Design and Implementations of a Learning T-Model Neural Network

    Zheng TANG  Okihiko ISHIZUKA  

     
    LETTER-Neural Networks

      Vol:
    E78-A No:2
      Page(s):
    259-263

    In this letter, we demonstrate an experimental CMOS neural circuit towards an understanding of how particular computations can be performed by a T-Model neural network. The architecture and a digital hardware implementation of the learning T-Model network are presented. Our experimental results show that the T-Model allows immense collective network computations and powerful learning.

  • A Rule-Embedded Neural-Network and Its Effectiveness in Pattern Recognition with -Posed Conditions

    Mina MARUYAMA  Nobuo TSUDA  Kiyoshi NAKABAYASHI  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E78-D No:2
      Page(s):
    152-162

    This paper describes an advanced rule-embedded neural network (RENN+) that has an extended framework for achieving a very tight integration of learning-based neural networks and rule-bases of existing if-then rules. The RENN+ is effective in pattern recognition with ill-posed conditions. It is basically composed of several component RENNs and an output RENN, which are three-layer back-propagation (BP) networks except for the input layer. Each RENN can be pre-organized by embedding the if-then rules through translation of the rules into logic functions in a disjunctive normal form, and can be trainded to acquire adaptive rules as required. A weight-modification-reduced learning algorithm (WMR) capable of standard regularization is used for the post-training to suppress excessive modification of the weights for the embedded rules. To estimate the effectiveness of the proposed RENN+, it was used for pattern recognition in a radar system for detection of buried pipes. This trial showed that a RENN+ with two component RENNs had good recognition capability, whereas a conventional BP network was ineffective.

  • Scanning Force Microscope Using Piezoelectric Excitation and Detection

    Toshihiro ITOH  Takahiro OHASHI  Tadatomo SUGA  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    146-151

    This paper reports on a new dynamic scanning force microscope (SFM), in which the piezoelectric microcantilever is utilized for the lever excitation and displacement sensing. Piezoelectric cantilevers can detect their deflection without external sensing elements and be vibrated with no oscillator outside. The cantilever integrated with the deflection detector and the oscillator changes the conventional construction of a dynamic SFM and expands its range of applicability. The microcantilever used consists of a ZnO layer sandwiched with Au electrodes deposited on a thin beam of thermally grown SiO2. The length, width and thickness of the lever are 125 µm, 50 µm and 3.5 µm, respectively. We have characterized this cantilever by measuring the charge spectrum and the frequency dependence of the admittance. From the charge spectrum the mechanical quality factor measured 300 in free vibration. Typical piezoelectric constant of the ZnO film was estimated approximately as 80% of single-crystal's value. The piezoelectric cantilever can be vibrated by applying the voltage with the frequency near the resonance to the piezoelectric layer. The excited amplitude per unit voltage at the resonance frequency was calculated as about 5 µm/V. The cantilever amplitude can be detected by measuring the current between electrodes, since the admittance depends on the quality factor. We have constructed a dynamic SFM without external oscillator and detector, and successfully obtained the surface images of a sol-gel derived PZT film in the cyclic contact operation mode. The longitudinal resolution of the SFM system was 0.3 nm at a 125 Hz bandwidth.

  • Permutation Cipher Scheme Using Polynomials over a Field

    Eiji OKAMOTO  Tomohiko UYEMATSU  Masahiro MAMBO  

     
    PAPER-Information Security

      Vol:
    E78-D No:2
      Page(s):
    138-142

    A permutation cipher scheme using polynomials over a field is presented. A permutation as well as substitution plays a major role in almost all conventional cryptosystems. But the security of the permutation depends on how symbols are permuted. This paper proposes the use of polynomials for the permutation and show that the scheme satisfies the following security criteria. (1) There are enough encryption keys to defend exhaustive attacks. (2) The permutation moves almost all samples into places which are different from the original places. (3) Most samples are shifted differently by different permutations. The permutation cipher scheme could be regarded as a scheme based on Reed-Solomon codes. The information symbols of the codes compose a key of the permutation cipher scheme.

  • Finding All Solutions of Piecewise-Linear Resistive Circuits Containing Nonseparable Transistor Models

    Kiyotaka YAMAMURA  Osamu MATSUMOTO  

     
    LETTER-Numerical Analysis and Self-Validation

      Vol:
    E78-A No:2
      Page(s):
    264-267

    An efficient algorithm is given for finding all solutions of piecewise-linear resistive circuits containing nonseparable transistor models such as the Gummel-Poon model or the Shichman-Hodges model. The proposed algorithm is simple and can be easily programmed using recursive functions.

  • A High Slew Rate Operational Amplifier for an LCD Driver IC

    Tetsuro ITAKURA  

     
    LETTER

      Vol:
    E78-A No:2
      Page(s):
    191-195

    This paper describes an efficient slew rate enhancement technique especially suitable for an operational amplifier used in an LCD driver IC. This technique employs an input-dependent biasing without directly monitoring an input; instead, monitoring an output of the first stage of the amplifier. This enhancement technique is easily applied to a conventional two-stage operational amplifier and requires only 8 additional transistors to increase slew rates for both rising and falling edges. The bias currents of the first and the second stages are simultaneously controlled by this biasing. Experimental operational amplifiers with and without this enhancement have been fabricated to demonstrate the improvement of slew rate. Slew rates of 12.5V/µsec for the rising edge and 50V/µsec for the falling edge with a 100 pF load capacitance have been achieved by this technique, compared with slew rates of 0.3V/µsec for the rising edge and 5V/µsec for the falling edge in the conventional amplifier.

  • Metal Injection Molding (MIM) Processing for Micro Structures; Part 1--Vibrational Processing to Improve the Surface Roughness of the Forming Molds--

    Haruo OGAWA  Yuichiro TAKAHASHI  Jun INAHASHI  Toru SENGA  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    162-166

    The objective of this study is to realize a manipulator of 0.5 mm in outside diameter as a part of 'research and development of micro machine technology.' This manipulator is intended as a part of a working robot to fix or observe the inside wall of a small pipe. One of the important problems of this research is to establish a processing method of a tubular small structure. MIM, metal injection molding, has been adopted to fabricate such a small structure. As a processing method to machine small molds for MIM, finish processing with surface roughness of Rmax 0.1 µm has been under our research applying 'vibrational processing technology,' which was developed on our own. This paper presents the results of 'vibrational processing technology' surface finishing of molds for metal injection.

  • 3-Dimensional Specific Thickness Glass Diaphragm Lens for Dynamic Focusing

    Takashi KANEKO  Yutaka YAMAGATA  Takaharu IDOGAKI  Tadashi HATTORI  Toshiro HIGUCHI  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    123-127

    A 3-dimensional specific thickness profile was fabricated on a thin glass diaphragm lens to reduce aberration at short focal distances for greater dynamic focusing. The deformation of the diaphragm was calculated by stress analysis utilizing the Finite Element Method (FEM). Geometric non linearity is considered in the FEM analysis. The glass diaphragm is 10 mm in diameter and the average thickness is 11 µm. To obtain both a curved shape and an optical surface on the glass diaphragm, the 3-dimensional precision grinding technique was utilized. The processed shape matches the designed one with less than 0.3 µm deviation, and the average surface roughness is 0.005 µm. Optical characteristics of the dynamic focusing lens having a specific thickness profile, were measured by Modulation Transfer Function (MTF) measurement equipment. At a focal distance of 250 mm, the specific thickness diaphragm lens resolution is 10 cycles/mm, whereas, the uniform thickness diaphragm is 4 cycles/mm. Even at other focal distances, the specific thickness diaphragm shows superior optical characteristics in comparison with those of the uniform thickness diaphragm. The 3-dimensional profile diaphragm resolution is 2.5 times finer at a focal distance of 250 mm, thus, being capable of displacement control for variable optic devices. This was achieved by employing semiconductor processing methods in conjunction with precision grinding techniques which are necessary for fabricating micro structures.

  • AlGaAs/GaAs Micromachining for Monolithic Integration of Micromechanical Structures with Laser Diodes

    Yuji UENISHI  Hidenao TANAKA  Hiroo UKITA  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    139-145

    GaAs-based micromachining is a very attractive technique for integrating mechanical structures and active optical devices, such as laser diodes and photodiodes. For monolithically integrating mechanical parts onto laser diode wafers, the micromachining technique must be compatible with the laser diode fabrication process. Our micromachining technique features three major processes: epitaxitial growth (MOVPE) for both the structural and sacrificial layers, reactive dry-etching by chlorine for high-aspect, three-dimensional structures, and selective wet-etching by peroxide/ammonium hydroxide solution to release the moving parts. These processes are compatible with laser fabrication, so a cantilever beam structure can be fabricated at the same time as a laser diode structure. Furthermore, a single-crystal epitaxial layer has little residual stress, so precise microstructures can be obtained without significant deformation. We fabricated a microbeam resonator sensor composed of two laser diodes, a photodiode, and a micro-cantilever beam with an area of 400700 µm. The cantilever beam is 3 µm wide, 5 µm high, and either 110µm long for a 200-kHz resonant frequency or 50 µm long for a 1-MHz resonant frequency. The cantilever beam is excited by an intensity-modulated laser beam from an integrated excitation laser diode; the vibration signal is detected by a coupled cavity laser diode and a photodiode.

  • Modeling of Curved Conductor Surface in Analysis of Cavity Resonators by Spatial Network Method

    Yukio IIDA  Masanobu MORITA  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E78-C No:2
      Page(s):
    193-200

    This paper describes the method of applying the integral form of Maxwell's equations to the transmission-line network used in the spatial network method for the modeling of curved conductor surfaces. The techniques of dealing with the transmission-line network near cylindrical conductor surface are explained in detail. To compare exact solutions with computed values, a cylindrical cavity resonator is analysed. The resonant frequencies and unloaded Q's for the computed three modes are obtained with the error of about 1%. Moreover, applying this treatment to the waveguide with magnetron anodeshape cross section, a cutoff-constant is computed successfully. It is found that the treatment proposed in this paper can be used as the method for modeling of curved conductor surface in the spatial network method. It is also considered that this treatment can be extend to TLM method.

  • Vertical Cavity Surface-Emitting Laser Array for 1.3 µm Range Parallel Optical Fiber Transmissions

    Toshihiko BABA  Yukiaki YOGO  Katsumasa SUZUKI  Tomonobu KONDO  Fumio KOYAMA  Kenichi IGA  

     
    LETTER-Opto-Electronics

      Vol:
    E78-C No:2
      Page(s):
    201-203

    Long-wavelength 1.3 µm GaInAsP/InP vertical cavity surface-emitting lasers (VCSELs) have been demonstrated in an array configuration. With the strong current confinement by a buried heterostructure and the efficient optical feedback by a dielectric cavity, five VCSEL elements in a 24 array operated at room temperature with 5 mW total power output and wavelength error within 5%. The stacked planar optics including the VCSEL array is a promising optical transmitter in ultra large scale parallel optical communication systems.

  • Temperature Compensated Piezoresistor Fabricated by High Energy Ion Implantation

    Takahiro NISHIMOTO  Shuichi SHOJI  Kazuyuki MINAMI  Masayoshi ESASHI  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    152-156

    We developed piezoresistors with an intrinsic compensation of the offset temperature characteristics. High energy ion implantation was applied to fabricate this type of piezoresistor. The dopant profile of the buried piezoresistor resembles to that of the junction gate field effect transistor (JFET). The buried layer corresponds to a channel of JFET, and the substrate bias corresponds to the gate voltage. Owing to the independent temperature varying parameters, i.e., width of the depletion layer and carrier mobility in the channel, the drain current of the JFET has a temperature independent point at an appropriate gate source voltage. The effect was used in the new type of buried piezoresistor which has a driving point of zero temperature coefficient of resistance at an appropriate gate source voltage.

  • Dry-Released Nickel Micromotors with Low-Friction Bearing Structure

    Toshiki HIRANO  Tomotake FURUHATA  Hiroyuki FUJITA  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    132-138

    A new electrostatic wobble motor design and fabrication method were proposed, and micromotors were successfully fabricated and operated. The advantages are (1) thicker structural size, resulting in larger torque, (2) simple and safe fabrication process and (3) needle-shaped bearing to support the rotor. Needle-shaped bearing used here is expected to have lower friction comparing with the existing motor, since the load is smaller for this kind of bearing structure. Two major sources of the load, electrostatic force and capillary force, were considered to prove this tendency. Diamond-like Carbon (DLC) film was employed as a solid lubricant for its bearing. The friction of DLC and that of ilicon-dioxide were compared by experiment.

  • Off-Line Handwritten Word Recognition with Explicit Character Juncture Modeling

    Wongyu CHO  Jin H. KIM  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E78-D No:2
      Page(s):
    143-151

    In this paper, a new off-line handwritten word recognition method based on the explicit modeling of character junctures is presented. A handwritten word is regarded as a sequence of characters and junctures of four types. Hence both characters and junctures are explicitly modeled. A handwriting system employing hidden Markov models as the main statistical framework has been developed based on this scheme. An interconnection network of character and ligature models is constructed to model words of indefinite length. This model can ideally describe any form of hamdwritten words including discretely spaced words, pure cursive words, and unconstrained words of mixed styles. Also presented are efficient encoding and decoding schemes suitable for this model. The system has shown encouraging performance with a standard USPS database.

  • Reflection and Transmission Phase Characteristics of Inductive Discontinuities of Finite Thickness in Rectangular Waveguides

    Toshihiko SHIBAZAKI  Teruhiro KINOSHITA  Ryoji SHIN'YAGAITO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E78-C No:2
      Page(s):
    204-207

    The precise phase characteristics of the reflected and transmitted waves are obtained for electromagnetic scattering by inductive discontinuities of finite thickness located in rectangular waveguides. The incident wave is assumed to be the dominant mode, and the modified residue-calculus method is used for numerical analysis. The phase characteristics when the thickness and width of the iris are varied, and characteristics of the reflected and transmitted waves when resonance appears, are discussed. In addition, an X-band experiment is performed and the calculations for both the reflected and transmitted waves are shown to agree well with the experimental values.

  • Some New Type Regression Analysis Methods for Acoustic Environmental System Based on the Introduction of Multiplicative Noise

    Mitsuo OHTA  Akira IKUTA  

     
    LETTER-Acoustics

      Vol:
    E78-A No:1
      Page(s):
    123-126

    In this study, after focussing on an energy (or intensity) scaled variable of acoustic systems, first, a new regression analysis method is theoretically proposed by introducing a multiplicative noise model suitable to the positively scaled stocastic system. Then, the effectiveness of the proposed method is confirmed experimentally by applying it to the actual acoustic data.

  • One-Way Functions over Finite Near-Rings

    Eikoh CHIDA  Hiroki SHIZUYA  Takao NISHIZEKI  

     
    PAPER

      Vol:
    E78-A No:1
      Page(s):
    4-10

    A near-ring is an extended notion of a usual ring. Therefore a ring is a near-ring, but the converse does not necessarily hold. We investigate in this paper one-way functions associated with finite near-rings, and show that if there exists a one-way group homomorphism, there exists a one-way non-ring near-ring homomorphism (Theorem 1); if there exists a one-way ring homomorphism (Theorem 2). Further, we introduce a discrete logarithm problem over a finite near-ring, and show that the integer factoring is probabilistic polynomial-time Turing equivalent to a modified version of this problem (Theorem 3). Theorem 1 implies that under some standard cryptographic assumption, there is an affirmative but trivial solution to the extended version of the open question: Is there an encryption function f such that both f(x+y) and f(xy) are efficiently computed from given f(x) and f(y) ?

  • Light Scattering and Reflection Properties in Polymer Dispersed Liquid Crystal Cells with Memory Effects

    Rumiko YAMAGUCHI  Susumu SATO  

     
    PAPER-Electronic Displays

      Vol:
    E78-C No:1
      Page(s):
    106-110

    Memory type polymer dispersed liquid crystal (PDLC) can be applied to a thermal addressing display device cell. Making use of its easy fabrication of large area display using flexible film substrate, the PDLC film can be used as reusable paper for direct-view mode display. In this study, memory type PDLC cells are prepared with an aluminum reflector deposited onto one side of the substrate and the reflection property in the PDLC cell with the reflector is clarified and compared to that without the reflector in the off-, on- and memory-states. The increase of contrast ratio and the decrease of driving voltage can be concurrently realized by decreasing the cell thickness by attaching the reflector. In addition, the reflected light in the off-state is bright and colorless due to the reflector, as compared with the weak, bluish reflected light in the cell without the reflector. Reflected light in the on-state and the memory-state are tinged with blue.

  • Highly Sensitive Real Time Electro-Optic Probing for Long Logic Pattern Analysis

    Hironori TAKAHASHI  Shin-ichiro AOSHIMA  Kazuhiko WAKAMORI  Isuke HIRANO  Yutaka TSUCHIYA  

     
    PAPER

      Vol:
    E78-C No:1
      Page(s):
    67-72

    While Electro-Optic (E-O) sampling has achived the electric signal measurement with advantages of noninvasive, noncontact and ultrafast time resolution, it is unsuitable for measuring long logic patterns in fast ICs under the functional test conditions. To overcome this problem, a real time E-O probing using a continuous wave (CW) diode laser and a fast photodetector has been developed. By adopting a ZnTe E-O probe having a half-wave voltage of 3.6 kV, shot noise limited measurement with a frequency bandwidth of 480 MHz has been achieved using a low noise diode laser (wavelength of 780 nm, output power of 30 mW), a pin photodiode, a wideband low noise amplifier, and a digital oscilloscope having 500 MHz bandwidth as a waveform analyzer. The minimum detectable voltage was 23 mV under 700 times integration. In this paper, discussion of the voltage sensitivity of real time E-O probing is included. Key parameters for attaining the highly sensitive real time E-O probing are the sensitivity of the E-O probe and noises of the probing light and detection system.

28821-28840hit(30808hit)