The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

29561-29580hit(30728hit)

  • Present and Future Automotive Electronics

    Shuji MIZUTANI  

     
    INVITED PAPER

      Vol:
    E76-C No:12
      Page(s):
    1713-1716

    Electronics and automobiles were bound together by the introduction of emission regulations in the 1970's. The rapid progress of control technology and semiconductors that typify microcomputers has brought still closer relations between them. Without electronics, it would be impossible to realize features such as pursuit of comfort and environmental and safety measures which should be added to the automobile's fundamental features. In looking ahead to the future, the role of electronics in achieving electric automobiles and the ultimate goal of "automatic driving" is ever-increasing. Everyone knows that automobiles have become indispensable in our lives. In the future, the role of electronics will become increasingly important in order to evolve automobiles even further to allow harmonization with society.

  • In-Vehicle Information Systems and Semiconductor Devices They Employ

    Takeshi INOUE  Kikuo MURAMATSU  

     
    INVITED PAPER

      Vol:
    E76-C No:12
      Page(s):
    1744-1755

    It was more than 10 years ago that the first map navigation system, as an example of invehicle information system, has appeared in the market in Japan. Today's navigation system has been improved to the level that the latest system has 10 micro-processors, 7 MBytes of memories, and 4 GBytes of external data storage for map database. From the viewpoint of the automobile driver, there are still some problems with the system. Major problems in general are a lack of traffic information, better human interface, and a need for cost-reduction. The introduction of application specific ICs (ASICs) is expected to make systems smaller, costless, and give higher speed response. Today's in-vehicle information systems are reviewed function by function to discover what functions need to be implemented into ASICs for future systems, what ASICs will be required, and what technology has to be developed. It is concluded that more integration technology is expected including high parformance CPUs, large capacity memories, interface circuits, and some analog circuits such as DA converter. To develop this technology, some, major problems such as power consumption, number of input/output signals, as well as design aid and process technology are pointed out.

  • A Collision Detection Processor for Intelligent Vehicles

    Masanori HARIYAMA  Michitaka KAMEYAMA  

     
    PAPER

      Vol:
    E76-C No:12
      Page(s):
    1804-1811

    Since carelessness in driving causes a terrible traffic accident, it is an important subject for a vehicle to avoid collision autonomously. Real-time collision detection between a vehicle and obstacles will be a key target for the next-generation car electronics system. In collision detection, a large storage capacity is usually required to store the 3-D information on the obstacles lacated in a workspace. Moreover, high-computational power is essential not only in coordinate transformation but also in matching operation. In the proposed collision detection VLSI processor, the matching operation is drastically accelerated by using a Content-Addressable Memory (CAM) which evaluates the magnitude relationships between an input word and all the stored words in parallel. A new obstacle representation based on a union of rectangular solids is also used to reduce the obstacle memory capacity, so that the collision detection can be parformed only by parallel magnitude comparison. Parallel architecture using several identical processor elements (PEs) is employed to perform the coordinate transformation at high speed based on the COordinate Rotation DIgital Computation (CORDIC) algorithms. The collision detection time becomes 5.2 ms using 20 PEs and five CAMs with a 42-kbit capacity.

  • Optical Control of the Short Terminated Microstrip Filter utilizing Current Distribution of the Standing Wave

    Yasushi HORII  Masafumi HIRA  Takeshi NAKAGAWA  Sadao KURAZONO  

     
    LETTER

      Vol:
    E76-A No:12
      Page(s):
    2085-2088

    For the effective control of microwaves in the frequency domain, we propose a new method utilizing current distributions of standing waves on the terminated microstrip line. We analized a short ended microstrip line using the (FD)2TD method to indicate the effectiveness of our proposal. Further we proposed an optically controlled microstrip filter as an application of this method.

  • Radio Holographic Metrology with Best-Fit Panel Model of the Nobeyama 45-m Telescope

    Hiroyuki DEGUCHI  Masanori MASUDA  Takashi EBISUI  Yutaka SHIMAWAKI  Nobuharu UKITA  Katsunori M. SHIBATA  Masato ISHIGURO  

     
    PAPER

      Vol:
    E76-B No:12
      Page(s):
    1492-1499

    A best-fit panel model in the radio holographic metrology taking into account locations and sizes of actual surface panels in a large reflector antenna is presented. A displacement and tilt of each panel can be estimated by introducing the best-fit panel model. It was confirmed by simulations that the distinction can be drawn between a continuous surface error and a discontinuous one. Errors due to truncation of the radiation pattern were calculated by simulations. It was found that a measurement of a 128128 map is optimum for the 45-m telescope. The reliability of the measurements using this model was examined by experiments with panel displacements. Panel adjustments using the best-fit panel model successfully improved the surface accuracy of the antenna from 138µm rms to 84µm rms (/D=210-6).

  • A Specific Design Approach for Automotive Microcomputers

    Nobusuke ABE  Shozo SHIROTA  

     
    PAPER

      Vol:
    E76-C No:12
      Page(s):
    1788-1793

    When used for automotive applications, microcomputers have to meet two requirements more demanding than those for general use. One of these requirements is to respond to external events within a time scale of microseconds; the other is the high quality and high reliability necessary for the severe environmental operating conditions and the ambitious market requirements inherent to automotive applications. These needs especially the latter one have been responded to by further elaboration of each basic technology involved in semiconductor manufacturing. At the same time, various logic parts have been built into the microcomputer. This paper deals with several design approaches to the high quality and high reliability objective. First, testability improvement by the logical separation method focusing on the logic simulation model for generating test vectors, which enables us to reduce the time required for test vector development in half. Next, noise suppression methods to gain electromagnetic compatibility (EMC). Then, simplified memory transistor's analysis to evaluate the V/I-characteristics directly via external pins without opening the model seal, removing the passivation and placing a probe needle on the chip. Finally, increased reliability of on-chip EPROM using a special circuit raising the threshold value by approximately 1(V) compared to EPROM's without such a circuit.

  • Data Compression of Ambulatory ECG by Using Multi-Template Matching and Residual Coding

    Takanori UCHIYAMA  Kenzo AKAZAWA  Akira SASAMORI  

     
    PAPER

      Vol:
    E76-D No:12
      Page(s):
    1419-1424

    This paper proposed a new algorithm of data compression for ambulatory ECG, where no distortion was included in the reconstructed signal, templates were constructed selectively from detected beats, and categorized ECG morphologies (templates) could be displayed in decoding the compressed data. This algorithm consisted of subtracting a best-fit template from the detected beat with an aid of multi-template matching, first differencing of the resulting residuals and modified Huffman coding. This algorithm was evaluated by applying it to ECG signals of the American Heart Association (AHA) data base in terms of bit rates. Following features were indicated. (1) Decompressed signal coincided completely with the original sampled ECG data. (2) Bit rate was approximately 800 bps at the appropriate threshold 50-60 units (1 unit2.4µVolt) for the template matching. This bit rate was almost the same as that of the direct compression (encoding the first differenced signal of original signal). (3) The decompressed templates could make it easy to classify the templates into the normal and abnormal beats; this could be executed without fully decompressing the ECG signal.

  • Spectral Domain Analysis for Scattering Properties of Periodic Arrays on Dielectric Substrates

    Hideaki WAKABAYASHI  Masanobu KOMINAMI  Hiroji KUSAKA  Hiroshi NAKASHIMA  

     
    LETTER

      Vol:
    E76-B No:12
      Page(s):
    1587-1589

    A full-wave analysis for the scattering problem of infinite periodic arrays on dielectric substrates excited by a circularly-polarized incident wave is presented. The impedance boundary condition is solved by using the moment method in the spectral domain. Numerical results are given and scattering properties are discussed.

  • A Multiple Shaped Beam Antenna Using a Single Shaped Reflector

    Hiroki SHOKI  Kazuaki KAWABATA  

     
    PAPER

      Vol:
    E76-B No:12
      Page(s):
    1500-1507

    The authors propose a multiple shaped beam antenna which uses a single shaped reflector and simple feeds. This new type of multibeam antenna is very attractive for satellite communications and broadcasting because its beam-forming network is much simpler than conventional multibeam reflector antennas which uses cluster feeds. The design method for shaping the reflector surface is described, which is based on the concept of an equivalent array. By using this method, a design example is shown, in which the Japanese main islands are covered with four beams and twofold frequency reuse is operated. Also, the basic performance of this new antenna is clarified numerically.

  • A CMOS Time-to-Digital Converter LSI with Half-Nanosecond Resolution Using a Ring Gate Delay Line

    Takamoto WATANABE  Yasuaki MAKINO  Yoshinori OHTSUKA  Shigeyuki AKITA  Tadashi HATTORI  

     
    PAPER

      Vol:
    E76-C No:12
      Page(s):
    1774-1779

    The development of highly accurate and durable control system is becoming a must for todays high performance automobiles. For example, it is necessary to up-grade todays materials and methods creating more sensitive sensors, higher speed processors and more accurate actuators, while also being more durable. Thus, the development of a CMOS time-to-digital converter LSI with half-nanosecond resolution, which controls only pulse signals was achieved by employing 1.5 µm CMOS technology. The new signal detecting circuit, 1.1 mm2 in size, converts time to numerical values over a wide measurement range (13 bits). The compact digital circuit employs a newly developed "ring gate delay system". Within the LSI the fully digital circuit is highly durable. This allows it to be utilized even under severe conditions (for example an operating ambient temperature of 130). In order to measure time accurately, a method of correcting the variation of measurement time data employing a real-time conversion fully digital circuit is described. This method allows for fully automatic correction with a microcomputer, so no manual adjustment is required. In addition to sensor circuit applications, the LSI has great potential for Application Specific Integrated Circuit, (ASIC) such as a function cell with is a completely new method of measuring time.

  • ECG Data Compression by Using Wavelet Transform

    Jie CHEN  Shuichi ITOH  Takeshi HASHIMOTO  

     
    PAPER

      Vol:
    E76-D No:12
      Page(s):
    1454-1461

    A new method for the compression of electrocardiographic (ECG) data is presented. The method is based on the orthonormal wavelet analysis recently developed in applied mathematics. By using wavelet transform, the original signal is decomposed into a set of sub-signals with different frequency channels corresponding to the different physical features of the signal. By utilizing the optimum bit allocation scheme, each decomposed sub-signal is treated according to its contribution to the total reconstruction distortion and to the bit rate. In our experiments, compression ratios (CR) from 13.5: 1 to 22.9: 1 with the corresponding percent rms difference (PRD) between 5.5% and 13.3% have been obtained at a clinically acceptable signal quality. Experimental results show that the proposed method seems suitable for the compression of ECG data in the sense of high compression ratio and high speed.

  • An Error-Correcting Version of the Leiss's Parser for Context-Free Languages

    Ken-ichi KURODA  Eiichi TANAKA  

     
    LETTER-Automaton, Language and Theory of Computing

      Vol:
    E76-D No:12
      Page(s):
    1528-1531

    This paper describes an error-correcting parser (ec-parser) for context-free languages that is an extension of the Leiss's parser. Since the ec-parser uses precomputed informations and a pruning technique by lookahead, the ec-parser is always faster than the Lyon's parser. Several examples are shown.

  • Analysis of Abrupt Discontinuities in Weakly Guiding Waveguides by a Modified Beam Propagation Method

    Masashi HOTTA  Masahiro GESHIRO  Shinnosuke SAWA  

     
    PAPER

      Vol:
    E76-B No:12
      Page(s):
    1552-1557

    The beam propagation method (BPM) is a powerful and manageable method for the analysis of wave propagation along weakly guiding optical waveguides. However, the effects of reflected waves are not considered in the original BPM. In this paper, we propose two simple modifications of the BPM to make it relevant in characterizing abrupt discontinuities in weakly guiding waveguides at which a significant amount of reflection is expected to be observed. Validity of the present modifications is confirmed by the numerical results for abrupt discontinuities in step-index slab waveguides and butt-joints between different slab waveguides.

  • Full Wave Analysis of the Australian Omega Signal Observed by the Akebono Satellite

    Isamu NAGANO  Paul A. ROSEN  Satoshi YAGITANI  Minoru HATA  Kazutoshi MIYAMURA  Iwane KIMURA  

     
    PAPER

      Vol:
    E76-B No:12
      Page(s):
    1571-1578

    The Akebono satellite observed the Australian Omega signals when it passed about 1000km over the Omega station. In this paper, we compare the observed Omega signal intensities with the values obtained using a full wave calculation and we discuss a mechanism of modulation of the signals. The relative spatial variations of the calculated Omega intensities are quite consistent with those observed, but the absolute calculated intensities themselves are several dB larger than the observed intensities. This difference in intensity may be due to the horizontal inhomogeneity of the D region, which is not modeled in the full wave calculation, or to an incorrect assumption about radiation characteristics of the Omega antenna. It is found that modulation of the observed signals is caused by the interference between the waves with different k vectors.

  • Tropospheric Propagation Characteristics at Ku-Band for Satellite to Ground and LOS Paths in Surabaya, Indonesia

    Gert BRUSSAARD  Jaap DIJK  Kim LIU  Jan DERKSEN  

     
    LETTER

      Vol:
    E76-B No:12
      Page(s):
    1593-1597

    Some results are presented of a one-year measurement period on an INTELSAT down link at Ku band with elevation of 14 for concurrent measurements of beacon attenuation, sky noise and point rainfall rate. Also some results are presented of line-of-sight (LOS) link fading characteristics at the same place. The projection of the down link trajectory on earth has nearly the same direction as the LOS path trajectory. The measurement results are compared with the theoretical values according to the CCIR recommended procedures of rain attenuation predictions for tropical regions, especially Surabaya, Indonesia. A record rain attenuation value of 80dB was observed.

  • Rain Depolarization Characteristics Related to Rainfall Types on Ka-Band Satellite-to-Ground Path

    Yasuyuki MAEKAWA  Nion Sock CHANG  Akira MIYAZAKI  

     
    PAPER

      Vol:
    E76-B No:12
      Page(s):
    1564-1570

    Observations of rain depolarization characteristics were conducted using the CS-2 and CS-3 beacon signals (19.45GHz, circular polarization, elevation angle=49.5) during seven years of 1986-1992 at Neyagawa, Osaka. The mean cross-polar phase relative to the co-polar phase of each rainfall event is distributed in a comparatively wide range from -100 to -150. This large variation is suggested to be caused by the difference of raindrop size distribution (DSD) in addition to that of rain intensity. The effects of DSD are examined by rain attenuation statistics for specific months, together with direct measurements of raindrop diameters on the ground for several rainfall events. Compared with representative DSD models, the effects of the Joss-drizzle type with relatively small raindrops primarily appear in "Baiu (Tsuyu)" period, while the effects of the Marshall-Palmer type which represents a standard type are enhanced in "Shurin (Akisame)" period. On the other hand, the effects of the Joss-thunderstorm type with comparatively large raindrops do not indicate a very clear seasonal variation. Possible improvements of XPD performed by differential phase shifters are generally found to be lower than 10dB for the rain depolarization due to the effect of residual differential attenuation after the cancellation of differential phase shift. Such XPD improvements are, however, very sensitive to the type of DSD, and it is suggested that the improvements are at least greater than 6dB for the Joss-drizzle type, whereas they are less than 6dB for the Marshall-Palmer and Joss-thunderstorm types. The effects of the XPD improvements are thus related to rainfall types, i.e., the type of DSD, and the improvements are considerably dependent upon the seasons in which each rainfall type frequently appears.

  • Two-Dimensional Active Imaging of Conducting Objects Buried in a Dielectric Half-Space

    Yiwei HE  Toru UNO  Saburo ADACHI  Takunori MASHIKO  

     
    PAPER

      Vol:
    E76-B No:12
      Page(s):
    1546-1551

    A two-dimensional quasi-exact active imaging method for detecting the conducting objects buried in a dielectric half-space is proposed. In this imaging method, an image function which is a projection of buried object to an arbitrary direction, is introduced exactly by taking account of the presence of the planar boundary. The image function is synthesized from the scattering fields which are measured by moving a transmitting antenna (a current source) and a receiving antenna (an observation point) simultaneously along the ground surface. The scattering field is generated by the physical optics current assumed on the surface of buried object. Because the effectiveness of physical optics approximation has been confirmed for this problem, this is a quasi-exact active imaging method. The validity of this imaging method is confirmed by some numerical simulations and an experiment.

  • An Autocorrelation Associative Neural Network with Self-Feedbacks

    Hiroshi UEDA  Masaya OHTA  Akio OGIHARA  Kunio FUKUNAGA  

     
    LETTER

      Vol:
    E76-A No:12
      Page(s):
    2072-2075

    In this article, the autocorrelation associative neural network that is one of well-known applications of neural networks is improved to extend its capacity and error correcting ability. Our approach of the improvement is based on the consideration that negative self-feedbacks remove spurious states. Therefore, we propose a method to determine the self-feedbacks as small as possible within the range that all stored patterns are stable. A state transition rule that enables to escape oscillation is also presented because the method has a possibility of falling into oscillation. The efficiency of the method is confirmed by means of some computer simulations.

  • Load Balancing Based on Load Coherence between Continuous Images for an Object-Space Parallel Ray-Tracing System

    Hiroaki KOBAYASHI  Hideyuki KUBOTA  Susumu HORIGUCHI  Tadao NAKAMURA  

     
    PAPER-Computer Systems

      Vol:
    E76-D No:12
      Page(s):
    1490-1499

    The ray-tracing algorithm can synthesize very realistic images. However, the ray tracing is very time consuming. To solve this problem, a load balancing strategy using temporal coherence between images in an animation is presented for balancing computational loads among processing elements of a parallel processng system. Our parallel processing model is based on a space subdivision method for the ray-tracing algorithm. A subdivided object space is distributed among processing elements of the parallel system. To clarify the effectiveness of the load balancing strategy, we examine the system performance by computer simulation.

  • Computing the Expected Maximum Number of Vertex-Disjoint s-t Paths in a Probabilistic Basically Series-Parallel Digraph

    Peng CHENG  Shigeru MASUYAMA  

     
    PAPER-Graphs, Networks and Matroids

      Vol:
    E76-A No:12
      Page(s):
    2089-2094

    In this paper, we propose a polynomial time algorithm for computing the expected maximum number of vertex-disjoint s-t paths in a probabilistic basically series-parallel directed graph and a probabilistic series-parallel undirected graph with distinguished source s and sink t(st), where each edge has a mutually independent failure probability and each vertex is assumed to be failure-free.

29561-29580hit(30728hit)