The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Waveguide(507hit)

121-140hit(507hit)

  • Design Optimization of H-Plane Waveguide Component by Level Set Method

    Koichi HIRAYAMA  Yasuhide TSUJI  Shintaro YAMASAKI  Shinji NISHIWAKI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E94-C No:5
      Page(s):
    874-881

    We present a design optimization method of H-plane waveguide components, based on the level set method with the finite element method. In this paper, we propose a new formulation for the improvement of a level set function, which describes shape, location, and connectivity of dielectric in a design region. Employing the optimization procedure, we demonstrate that optimized structures of an H-plane waveguide filter and T-junction are obtained from an initial structure composed of several circular blocks of dielectric.

  • Transition from Waveguide to Two Microstrip Lines with Slot Radiators in the Millimeter-Wave Band

    Kazuyuki SEO  Kunio SAKAKIBARA  Nobuyoshi KIKUMA  

     
    PAPER-Antennas and Antenna Measurement

      Vol:
    E94-B No:5
      Page(s):
    1184-1193

    Many kinds of microstrip array antennas have been developed in the millimeter-wave band. In order to avoid feeding loss and the decrease of antenna gain by beam shift due to frequency changes, center-fed array antennas are advantageous. In this case, the element spacing around the feeding circuit of the transition from the waveguide to two microstrip lines is larger than one wavelength. Therefore, the sidelobe level grows significantly. In order to suppress the sidelobe level, we propose transitions with slot radiators. Moreover, any polarization angles can be achieved by changing the slot angle. A wide variety from 1.5% to 70% of slot radiator coupling powers can be achieved. To investigate the performance of the proposed transition, 10, 22 and 30-element center-fed microstrip comb-line antennas with the proposed transition were developed at 76.5 GHz, and measured performance was evaluated in the millimeter-wave band.

  • Full-Wave Design Considering Slot Admittance in 2-D Waveguide Slot Arrays with Perfect Input Matching

    Miao ZHANG  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:3
      Page(s):
    725-734

    A novel design technique for two-dimensional (2-D) waveguide slot arrays is proposed in this paper that combines a full-wave method of moments (MoM) analysis and an equivalent circuit with the explicit restraint of input matching. The admittance and slot spacing are determined first in an equivalent circuit to realize the desired distribution of power dissipation and phase, with the explicit restraint of input matching. Secondly by applying a full-wave MoM analysis to the finite 2-D array, slot parameters are iteratively determined to realize the active admittance designed above where slot mutual coupling and wall thickness are fully taken into account. The admittance, treated as the key parameter in the equivalent circuit corresponds to the power dissipation of the slots but not to the slot voltage, which is directly synthesized from the radiation pattern. The initial value of the power dissipation is assumed to be proportional to the square of the amplitude of the desired slot voltage. This assumption leads to a feedback procedure, because the resultant slot voltage distribution generally differs from the desired ones due to the effect of non-uniformity in the characteristic impedance on slot apertures. This slot voltage error is used to renew the initial distribution of power dissipation in the equivalent circuit. Generally, only one feedback cycle is needed. Two 2427-element arrays with uniform and Taylor distributions were designed and fabricated at 25.3 GHz. The measured overall reflections for both antennas were suppressed below -18 dB over the 24.3-26.3 GHz frequency range. High aperture efficiencies of 86.8% and 55.1% were realized for the antennas with uniform and Taylor distributions, the latter of which has very low sidelobes below -33 dB in both the E- and H-planes.

  • Loss of Post-Wall Waveguides and Efficiency Estimation of Parallel-Plate Slot Arrays Fed by the Post-Wall Waveguide in the Millimeter-Wave Band

    Yuanfeng SHE  Thi Huong TRAN  Koh HASHIMOTO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:3
      Page(s):
    312-320

    This paper presents the loss factors in the post-wall waveguide-fed parallel-plate slot array antenna in the millimeter-wave band. At first, transmission loss is evaluated per unit length by measuring the losses of post-wall waveguides on various substrates with different thicknesses in different bands. Measured results of the frequency dependence agree with theoretical predictions using the effective conductivity and the complex permittivity obtained by the whispering gallery mode resonator method. Then the authors evaluate the antennas with various sizes at 76.5 GHz. The antenna efficiency is evaluated by taking into account the loss factors related to: the transmission loss both in the feed and the parallel plate waveguides, the aperture efficiency and the insertion loss and the reflection of the transition. Also, the loss due to the locally-perturbed currents by the slot radiation is evaluated. The sum of the losses in the prediction quantitatively agrees with the measurement.

  • Design of a Broadband Cruciform Substrate Integrated Waveguide Coupler

    Mitsuyoshi KISHIHARA  Isao OHTA  Kensuke OKUBO  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:2
      Page(s):
    248-250

    A broadband cruciform substrate integrated waveguide coupler is designed based on the planar circuit approach. The broadband property is obtained by widening the crossed region in the same way as rectangular waveguide cruciform couplers. As a result, a 3 dB coupler with fractional bandwidth of 30% is realized at 24 GHz.

  • In Situ Observation of Reduction Behavior of Cytochrome c Adsorbed on Glass Surface by Slab Optical Waveguide Spectroscopy

    Naoki MATSUDA  Hirotaka OKABE  Masaki FUJII  Masayoshi MATSUI  Yusuke AYATO  Akiko TAKATSU  Kenji KATO  

     
    PAPER

      Vol:
    E94-C No:2
      Page(s):
    170-175

    In situ observation of the adsorption process and the states of cytochrome c on glass/solution interfaces, and the functionality of the reduction reaction of adsorbed cytochorome c were performed by using slab optical waveguide (SOWG) spectroscopy. The peak position of the absorption band of cytochorome c adsorbed on a bare glass surface was almost the same as that of that in solution. The cytochorome c adsorbed on glass/solution interface was reduced by sodium dithionite solution. The adsorbed cytochorome c was still maintained its functionality after immobilization.

  • Scattering of a Plane Wave from the End-Face of a Three-Dimensional Waveguide System

    Asami TAKI  Akira KOMIYAMA  

     
    BRIEF PAPER-Scattering and Diffraction

      Vol:
    E94-C No:1
      Page(s):
    63-67

    The scattering of a plane wave from the end-face of a three-dimensional waveguide system composed of a large number of cores is treated by the volume integral equation for the electric field and the first order term of a perturbation solution for TE and TM wave incidence is analytically derived. The far scattered field does not almost depend on the polarization of an incident wave and the angle dependence is described as the Fourier transform of the incident field in the cross section of cores. To clarify the dependence of the scattering pattern on the arrangement of cores some numerical examples are shown.

  • Practical Slot Array Design by Method of Moments Using One Basis Function and Constant Correction Length

    Jae-Ho LEE  Takuichi HIRANO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:1
      Page(s):
    158-165

    Method of moments (MoM) is an efficient design and analysis method for waveguide slot arrays. A rectangular entire-domain basis function is one of the most popular approximations for the slot aperture fields. MoM with only one basis function does not provide sufficient accuracy and the use of higher order mode of basis functions is inevitable to guarantee accuracy. However, including the higher order modes in MoM results in a rapid increase in the computational time as well as the analysis complexity; this is a serious drawback especially in the slot parameter optimization. The authors propose the slot correction length that compensates for the omission of higher order mode of basis functions. This length is constant for a wide range of couplings and frequency bands for various types of slots. The validity and universality of the concept of slot correction length are demonstrated for various slots and slot parameters. Practical slot array design can be drastically simplified by the use of MoM with only one basis function together with the slot correction length. As an example, a linear waveguide array of reflection-cancelling slot pairs is successfully designed.

  • Numerical Analysis of Two-Dimensional Photonic Crystal Waveguide Devices Using Periodic Boundary Conditions

    Yoshimasa NAKATAKE  Koki WATANABE  

     
    PAPER-Numerical Techniques

      Vol:
    E94-C No:1
      Page(s):
    32-38

    This paper presents a formulation of two-dimensional photonic crystal waveguide devices formed by circular cylinders. The device structures are considered as cascade connections of straight waveguides. Decomposing the structure into layers of the cylinder arrays, the input/output properties of the devices are obtained using an analysis method of multilayer structure. We introduce periodic boundary conditions in the direction perpendicular to the wave propagation, and the Floquet-modes of each layer are calculated by the Fourier series expansion method with the help of the recursive transition-matrix algorithm. Then, the input/output properties of the devices are obtained by recursive calculation of scattering matrix with each layer. The presented formulation is validated by numerical experiments by comparing with the previous works.

  • A Center-Feed Linear Array of Reflection-Canceling Slot Pairs on Post-Wall Waveguide

    Jae-Ho LEE  Jiro HIROKAWA  Makoto ANDO  

     
    LETTER-Antennas and Propagation

      Vol:
    E94-B No:1
      Page(s):
    326-329

    Post-wall waveguide with a linear array of reflection-canceling slot pairs and center-feed is designed to cancel the frequency dependent tilting of the main beam and enhance the bandwidth of the antenna boresight gain. The array is fed at the center of the waveguide from the backside; the length of the radiating waveguide is halved and the long line effect in traveling wave operation is suppressed. Authors establish the array design procedure in separate steps to reduce the computational load in the iterative optimization by using Ansoft HFSS simulator. A center-feed linear array as well as an end-feed equivalent with uniform excitation is designed for 25.6 GHz operation and measured. The measured performances confirm the design and the advantage of the centre-feed; a frequency independent boresight beam is observed and the frequency bandwidth for 3 dB gain reduction is enhanced by 1.5 times compared to the end-feed array.

  • Dual Evanescently Coupled Waveguide Photodiodes with High Reliability for over 40-Gbps Optical Communication Systems Open Access

    Kazuhiro SHIBA  Yasuyuki SUZUKI  Sawaki WATANABE  Tadayuki CHIKUMA  Takeshi TAKEUCHI  Kikuo MAKITA  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E93-C No:12
      Page(s):
    1655-1661

    For over 40-Gbps optical communication systems, phase coded modulation formats, like differential phase shift keying (DPSK) and quadrature phase shift keying (QPSK), are very important for signal frequency efficiency and long-reach transmission. In such systems, differential receivers which regenerate phase signals are key components. Dual Photo Diodes (dual PDs) are key semiconductor devices which determine the receiver performance. Each PD of the dual PDs should realize high speed performance, high responsibility and high input power operation capability. Highly symmetrical characteristics between the two PDs should be also realized, thus the dual PDs are desired to be monolithically integrated to one chip. In this paper, we describe the design, fabrication, characteristics and reliability of monolithically integrated dual evanescently coupled waveguide photodiodes (EC-WG-PDs) for the purpose described above. The structure of the EC-WG-PDs offers the attractive advantages of high speed performance, high responsivity and high input power operation. Furthermore, their fabrication process is suitable for the integration of two PDs on one ship. First, the optimization was done for high products of 3-dB bandwidth and responsivity for 43-Gbps DPSK receivers. Excellent characteristics (50 GHz bandwidth with a responsivity of 0.95 A/W), and high reliability were demonstrated. The other type of optimization was done for ultra high speed operation up to 100-Gbps. The fabricated PDs exhibited the 3 dB-bandwidth of 80 GHz with a responsivity of 0.25 A/W. Furthermore, 43-Gbps RZ-DPSK receivers including the dual EC-WG-PDs based on the former optimization and differential transimpedance amplifiers (TIAs) newly developed for the purpose were also presented. Clear and symmetrical eye openings were observed for both ports. The OSNR characteristics exhibited 14.3 dB at a bit error rate of 10-3 that is able to be recovery with FEC. These performances are enough for practical use in 43-Gbps RZ-DPSK systems.

  • Measurement of Complex Permittivity for Liquid Materials Using the Open-Ended Cut-Off Waveguide Reflection Method

    Kouji SHIBATA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E93-C No:11
      Page(s):
    1621-1629

    Various studies of specific absorption rates (SARs) using liquid phantoms imitating human body tissues have been widely carried out in electromagnetic compatibility (EMC) research fields. In order to establish accurate SARs for measurement, a faithful mockup of human body tissue is needed. Therefore, knowledge of the accurate measurement of sample materials with high permittivity and high loss is very important. In this study, the complex permittivity of tap water, ethanol, methanol and isopropanol is measured by the open-ended cut-off circular waveguide reflection method. The effectiveness of the method presented here of measuring a liquid phantom with high-permittivity and high-loss is also confirmed by comparing the measured results with the results obtained by the TM010 circular cavity resonator method. At this time, the effects on the input impedance under variations of the insertion length and termination conditions were studied. Then the complex permittivity of tap water, ethanol, methanol and isopropanol was measured at frequencies ranging from 0.5 to 3.0 GHz using the measurement procedure above. As a result, we confirmed the frequency characteristics of the complex permittivity for a wide variety of high-loss liquid materials.

  • Design of a Partially-Corporate Feed Double-Layer Slotted Waveguide Array Antenna in 39 GHz Band and Fabrication by Diffusion Bonding of Laminated Thin Metal Plates

    Miao ZHANG  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2538-2544

    Introducing diffusion bonding of laminated thin metal plates to the fabrication of slotted waveguide arrays enlightens the high potential and the feasibility of multi-layer antennas with high-performance. It is a promising process with low cost even for a double-layer antenna, because the number of etching patterns for thin metal plates is only five. In this paper, a double-layer antenna for broadband characteristics is designed in 39 GHz band as demonstration. A 20 20-element antenna is composed of 2 2 sub-arrays by installing a partially-corporate feed circuit in the bottom layer underneath radiating waveguides in the top layer. The five-element sub-arrays in both the feeding and radiating parts are designed first. A new structure for the last slot coupler with shortened termination is also proposed to avoid an extra slot-free region when assembling the neighbor sub-arrays. As the simulation results by HFSS, the maximum gain of 34.55 dBi with the antenna efficiency of 85.5% is estimated at 38.5 GHz. The test antenna is fabricated by the diffusion bonding of thin copper plates. As the measurement results, a very high aperture efficiency of 83.2% with the directivity of 34.5 dBi is realized at the center frequency of 38.75 GHz, where the antenna gain of 34.4 dBi with the high antenna efficiency of 81.4% is achieved. The bandwidth of 5.0% defined as 1 dB down from the maximum gain is achieved.

  • Narrow-Wall-Connected Microstrip-to-Waveguide Transition Using V-Shaped Patch Element in Millimeter-Wave Band

    Kazuyuki SEO  Kunio SAKAKIBARA  Nobuyoshi KIKUMA  

     
    PAPER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2523-2530

    Narrow-wall-connected microstrip-to-waveguide transition using V-shaped patch element in millimeter-wave band is proposed. Since the microstrip line on the narrow-wall is perpendicular to the E-plane of the waveguide, waveguide field does not couple directly to the microstrip line. The current on the V-shaped patch element flows along inclined edges, then current on the V-shaped patch element couples to the microstrip line efficiently. Three types of transitions are investigated. A numerical investigation of these transitions show some relations between bandwidth and insertion loss. It is confirmed that the improved transition exhibits an insertion loss of 0.6 dB from 76 to 77 GHz, and a bandwidth of 4.1% (3.15 GHz) for the reflection coefficient below -15 dB.

  • Narrow-Wall-Slotted Hollow-Waveguide Array Antenna Using Partially Parallel Feeding System in Millimeter-Wave Band

    Yuki IKENO  Kunio SAKAKIBARA  Nobuyoshi KIKUMA  Hiroshi HIRAYAMA  

     
    PAPER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2545-2553

    We developed a slotted waveguide planer array antenna with partially parallel feeding in millimeter-wave band. Travelling-wave excitation is more effective for low loss feeding of array antennas than parallel feeding systems. However, array antenna with travelling-wave excitation essentially possesses a significant problem of long line effect which degrades gain due to beam shift by frequency change when the array antenna is fed from the edge of the radiating waveguide. We propose the way to reduce the gain degradation due to frequency change, thus, partially parallel feeding system is developed. Measured performance of the developed antenna is evaluated in this paper.

  • Empirical Dispersion Formula of the Conductor-Backed Coplanar Waveguide with Via Holes

    Jung Han CHOI  

     
    LETTER-Electromagnetic Theory

      Vol:
    E93-C No:9
      Page(s):
    1478-1480

    An empirical dispersion formula is proposed and experimentally verified considering higher order modes of the conductor-backed coplanar waveguide with via holes. For this purpose, an effective dielectric constant is extracted up to 100 GHz from measured S-parameters. By fitting the extracted data, an empirical equation is extracted. The simulation of the Gaussian pulse transmission and the comparison results with the modeling data validate the reported expression.

  • Multilayered Volumetric Composite Right/Left Handed Metamaterial Structures Composed of Dielectric Resonators and Parallel Mesh Plates

    Tetsuya UEDA  Shusuke ADACHI  Naobumi MICHISHITA  Masahiro AKIYAMA  Tatsuo ITOH  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1063-1071

    Multilayered volumetric composite right/left handed metamaterial structures are investigated. The present structure is composed of conducting mesh plates and dielectric layers including dielectric resonators. The 2-D composite right/left handed metamaterial structure is designed for the in-plane propagation. Propagation mode analysis was made for the volumetric structure under the periodic boundary condition along the normal to the layers as well as for finite number of layered type for comparison. The negative-refractive-index planar lenses were designed and fabricated for the demonstration. It is found from the numerical simulation that the beam focusing through the planar lens with large number of layers is clearly confirmed in both magnitude and phase distribution of the fields. On the other hand, for small number of layers, the beam spot is not found in the magnitude distribution due to the effect of discontinuities between air and designed structure at the top and bottom surfaces, but is still found in the phase distribution. The effect of number of stacked layers on the propagation characteristics is discussed by comparing the numerical simulation results with the measurement.

  • Compact and Athermal DQPSK Demodulator with Silica-Based Planar Lightwave Circuit Open Access

    Yusuke NASU  Yohei SAKAMAKI  Kuninori HATTORI  Shin KAMEI  Toshikazu HASHIMOTO  Takashi SAIDA  Hiroshi TAKAHASHI  Yasuyuki INOUE  

     
    PAPER-Optoelectronics

      Vol:
    E93-C No:7
      Page(s):
    1191-1198

    We present a full description of a polarization-independent athermal differential quadrature phase shift keying (DQPSK) demodulator that employs silica-based planar lightwave circuit (PLC) technology. Silica-based PLC DQPSK demodulator has good characteristics including low polarization dependence, mass producibility, etc. However delay line interferometer (DLI) of demodulator had the large temperature dependence of its optical characteristics, so it required large power consumption to stabilize the chip temperature by the thermo-electric cooler (TEC). We previously made a quick report about an athermal DLI to reduce a power consumption by removing the TEC. In this paper, we focus on the details of the design and the fabrication method we used to achieve the athermal characteristics, and we describe the thermal stability of the signal demodulation and the reliability of our demodulator. We described two athermalization methods; the athermalization of the transmission spectrum and the athermalization of the polarization property. These methods were successfully demonstrated with keeping a high extinction ratio and a small footprint by introducing a novel interwoven DLI configuration. This configuration can also limit the degradation of the polarization dependent phase shift (PDf) to less than 1/10 that with the conventional configuration when the phase shifters on the waveguide are driven. We used our demodulator and examined its demodulation performance for a 43 Gbit/s DQPSK signal. We also verified its long-term reliability and thermal stability against the rapid temperature change. As a result, we confirmed that our athermal demodulator performed sufficiently well for use in DQPSK systems.

  • Connected Post-Wall (C-PW) Waveguide for Efficient Design of Broad Wall Slots by Using Equivalent Solid-Wall Waveguide

    Jae-Ho LEE  Kimio SAKURAI  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1038-1046

    Post-wall waveguide slot arrays are potential candidates for millimeter-wave systems. The modeling of the post-walls by the equivalent solid-walls in terms of guided wavelength is indispensable for intensive optimization of slot design for reducing computational load. In the single mode waveguide slot arrays, the modeling errors of the post-wall waveguide by the solid-wall waveguide are serious especially for the transversely located slots. The S-parameter prediction errors become larger as we increase the height of the waveguide to utilize the low-loss advantage of the waveguide. The authors propose a novel post-wall waveguide structure, named as a connected post-wall (C-PW), to enhance the equivalence. The C-PW waveguide keeps enhanced equivalence to the solid-walls even for a larger substrate height. The predictions are confirmed by simulations and measurements. An 8-element linear array of reflection-cancelling slot pairs is designed by using the equivalent solid-wall model to demonstrate the feasibility of the simple design in the C-PW.

  • Micromachined RF Devices for Concurrent Integration on Dielectric-Air-Metal Structures

    Tamotsu NISHINO  Masatake HANGAI  Yukihisa YOSHIDA  Sang-Seok LEE  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1111-1118

    This paper proposes a concept of a concurrent configuration of radio-frequency (RF) micromachined and micro-electro-mechanical-system (MEMS) devices. The devices are fabricated on an originally developed dielectric-air-metal (DAM) structure that suits for fabrication of various devices all together. The DAM structure can propose membrane-supported hollow elements embedded in a silicon wafer by creating cavities in it. Even though the devices have different cavity depths, they are processed by just one planarization. In addition, since the structure is worked only from the front side of the wafer, no flipping process as well as no wafer bonding process is required, and the fact realizes low-cost concurrent integration. As applications of the DAM structures, a hollow grounded co-planar waveguide, lumped element circuitries, and an MEMS switch are demonstrated.

121-140hit(507hit)