The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Waveguide(507hit)

221-240hit(507hit)

  • Dual-Band CPW-Fed Slot Antennas Using Loading Metallic Strips and a Widened Tuning Stub

    Sarawuth CHAIMOOL  Prayoot AKKARAEKTHALIN  Vech VIVEK  

     
    PAPER-Antenna Design

      Vol:
    E88-C No:12
      Page(s):
    2258-2265

    By inserting a slot and metallic strips at the widened stub in a single layer and fed by coplanar waveguide (CPW) transmission line, novel dual-band and broadband operations are presented. The proposed antennas are designed to have dual-band operation suitable for applications in DCS (1720-1880 MHz), PCS (1850-1990 MHz), IMT-2000 (1920-2170 MHz), and IEEE 802.11 WLAN standards in the 2.4 GHz (2400-2484 MHz) and 5.2 GHz (5150-5350 MHz) bands. The dual-band antennas are simple in design, and the two operating modes of the proposed antennas are associated with perimeter of slots and loading metallic strips, in which the lower operating band can be controlled by varying the perimeters of the outer square slot and the higher band depend on the inner slot of the widened stub. The experimental results of the proposed antennas show the impedance bandwidths of the two operating bands, determined from 10-dB return loss, larger than 61% and 27% of the center frequencies, respectively.

  • FDTD Analysis of Pulse Amplification in Er-Yb Codoped Garnet Crystal Waveguide-Type Optical Amplifier

    Nobuaki HIMENO  Nobuo GOTO  Yasumitsu MIYAZAKI  

     
    PAPER-EM Analysis

      Vol:
    E88-C No:12
      Page(s):
    2236-2242

    Waveguide-type optical amplifiers doped with Ytterbium and Erbium ions are theoretically studied. Sensitization of Er-doped amplifiers with Yb ion doping have many advantages such as the possibility of using broader pumping wavelength range and efficient pumping with smaller pumping power. Transient amplification characteristics of optical short pulses are numerically analyzed using FDTD method. The amplification characteristics are compared with the result of the steady state analysis using the rate equations.

  • A Three-Way Divider for Partially-Corporate Feed in an Alternating Phase-Fed Single-Layer Slotted Waveguide Array

    Miao ZHANG  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E88-B No:11
      Page(s):
    4339-4345

    In this paper, a three-way divider is proposed for a partially-corporate feed in an alternating phase-fed single-layer slotted waveguide array. The divider is placed at the middle of the feed waveguide and reduces the long line effects; the frequency bandwidth is doubled. It is a kind of cross junction with one input port and three output ports; most of the power is equally divided into the right and left halves of the feed waveguide while the rest of power goes straight into the center radiating waveguide. Based upon the moment method design of the three-way divider, an inductive post is introduced for wide band power dividing control to the radiating waveguide. Reflection is below -20 dB over a wide bandwidth of 24.3-26.3 GHz, and the range of power dividing ratio ranges from 1/43 to 1/4. The amplitude and the phase from the two output ports to the feed waveguide are well balanced, and the differences are less than 0.1 dB and 5.0 degrees, respectively. The MoM analysis and the wide band design are verified experimentally in the 4 GHz band.

  • An Alternating-Phase Fed Single-Layer Slotted Waveguide Array in 76 GHz Band and Its Sidelobe Suppression

    Yuichi KIMURA  Masanari TAKAHASHI  Jiro HIROKAWA  Makoto ANDO  Misao HANEISHI  

     
    PAPER

      Vol:
    E88-C No:10
      Page(s):
    1952-1960

    This paper presents designs and performances of 76 GHz band alternating-phase fed single-layer slotted waveguide arrays. Two kinds of design, that is, uniform aperture illumination for maximum gain and Taylor distribution for sidelobe suppression of -25 dB, are conducted. High gain and high efficiency performance of 34.8 dBi with 57% is achieved for the former, while satisfactory sidelobe suppression of -20 dB in the H-plane and -23 dB in the E-plane with high efficiency is confirmed for the latter. The simple structure dispensing with electrical contact between the slotted plate and the groove feed structure is the key advantage of alternating-phase fed arrays and the slotted plate is just tacked on the feed structure with screws at the periphery. High gain and high efficiency performances predicted theoretically as well as design flexibility of the alternating-phase fed array are demonstrated in the millimeter wave frequency.

  • Leakage Properties of Stub-Loaded Ridge-Rectangular Waveguides

    Mikio TSUJI  Hiroshi SHIGESAWA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E88-C No:9
      Page(s):
    1853-1859

    We have presented a new analytical method for the stub-loaded ridge waveguide that is a candidate of leaky-wave antennas in the millimeter-wave region. This guide has many singular conductor edges, so that its accurate analysis is very difficult. The present method overcomes such difficulty by introducing the singular fields at the edges into the field expressions beforehand. Then we have investigated the dispersion characteristics for various structural parameters, to find a structure suitable to antenna applications. Finally, we have verified their behavioral feature experimentally.

  • Analysis of Dielectric-Loaded Waveguide Slot Antennas by the Hybrid Mode-Matching/Moment Method

    Boyu ZHENG  Zhongxiang SHEN  

     
    PAPER-Antennas and Propagation

      Vol:
    E88-B No:8
      Page(s):
    3416-3427

    This paper presents a hybrid technique combining the mode-matching method and moment method to analyze various slots cut in the wall of a rectangular waveguide partially filled with a dielectric slab. The waveguide slot structure is decomposed into two parts: a dielectric-loaded waveguide T-junction and an open-ended waveguide radiating into half space. The T-junction is analyzed by the mode-matching method, while the open-ended waveguide is characterized by the moment method with the modal functions in the slot being the full domain basis functions. A new approach for computing multidimensional integrals is proposed in the formulation of the open-ended waveguide, which greatly reduces the computation effort. The T-junction and the open-ended waveguide are then cascaded to obtain the final scattering parameters of the slot structure. Numerical results for different slots on a dielectric-loaded rectangular waveguide calculated by the hybrid method are presented and validated by comparing with measured and simulated data by Ansoft's HFSS. Good agreement is observed for all the cases considered. Parametrical studies are also conducted to examine the effect of the dielectric slab's thickness and relative permittivity on slot antenna's impedance/admittance.

  • A Compact Design of W-Band High-Pass Waveguide Filter Using Genetic Algorithms and Full-Wave Finite Element Analysis

    An-Shyi LIU  Ruey-Beei WU  Yi-Cheng LIN  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:8
      Page(s):
    1764-1771

    This paper proposes an efficient two-phase optimization approach for a compact W-band double-plane stepped rectangular waveguide filter design, which combines genetic algorithms (GAs) with the simplified transmission-line model and full-wave analysis. Being more efficient and robust than the gradient-based method, the approach can lead to a compact waveguide filter design. Numerical results show that the resultant waveguide filter design with 4 sections (total length 19.6 mm) is sufficient to meet the design goal and provides comparable performance to that with 8 sections (total length 35.6 mm) by the Chebyshev synthesis approach. Based on the present approach, nineteen compact high-pass waveguide filters have been implemented and measured at the W-band with satisfactory performance.

  • Flat-Topped Spectral Response in a Ladder-Type Interferometric Filter

    Seok-Hwan JEONG  Shinji MATSUO  Yuzo YOSHIKUNI  Toru SEGAWA  Yoshitaka OHISO  Hiroyuki SUZUKI  

     
    PAPER-Optoelectronics

      Vol:
    E88-C No:8
      Page(s):
    1747-1754

    We propose and demonstrate a novel ladder interferometric filter that exhibits flat-topped spectral response for use in wavelength-division-multiplexing (WDM) based photonic networks. We numerically analyze the flattened spectral response in a ladder-type filter by modifying the transfer matrix of ladder interferometer. Conventional parabolic-shaped and flat-topped-designed ladder interferometric filters are fabricated, and characterized. We demonstrate a flat-topped filter response in the fabricated device. The shape factor, which is defined by the ratio of -1 dB bandwidth to -10 dB bandwidth, is improved from 0.32 to 0.54. The tunability and the increase in filter extinction ratio of the proposed device are also discussed.

  • Scalable Optical Fiber Wiring System for over 10,000-Fiber Shuffler

    Yoshiteru ABE  Masaru KOBAYASHI  Mamoru HIRAYAMA  Ryo NAGASE  

     
    PAPER-Optoelectronics

      Vol:
    E88-C No:8
      Page(s):
    1755-1763

    The increasing number of channels in dense wavelength division multiplexing (DWDM) systems has led to the need for wiring involving a large number of optical fibers in the system racks. We have developed a novel scalable optical fiber wiring system designed to realize as many as 10,000-fiber shuffled interconnections without fiber congestion. We propose a scheme for constructing a large-scale shuffler capable of permuting interconnected fibers that employs plural optical fiber sheets, and for arranging optical fibers without congestion in racks. We constructed a 16,384-fiber shuffler system with sixty-four 256-fiber shuffler sheets and 16-fiber fiber physical contact (FPC) connectors for a 128128 switch system with 1128 planar lightwave circuit (PLC) type thermo-optic switches (TOSW). Input here the part of summary.

  • Magnetic Near-Field Distribution Measurements above a Patch Antenna by Using an Optical Waveguide Probe

    Masanori TAKAHASHI  Hiroyasu OTA  Ken Ichi ARAI  Risaburo SATO  

     
    PAPER-Measurements

      Vol:
    E88-B No:8
      Page(s):
    3140-3145

    A magnetic field probe consisting of a LiNbO3 optical waveguide modulator and a loop antenna element was developed to enable accurate measurement of magnetic near-fields in the gigahertz range. The invasiveness of the probe was assessed by using it to measure the magnetic field distribution above a patch antenna operating at 2.49 GHz. The measurements were compared with those obtained using a shielded loop probe. The experimental results obtained using the probe were also compared with simulation results obtained using a finite-difference time-domain (FDTD) method. The overall results indicated that the optical waveguide probe was capable of accurately measuring magnetic near-fields with low disturbance of the measured fields.

  • Electromagnetic and Thermal Dosimetry of a Cylindrical Waveguide-Type in vitro Exposure Apparatus

    Tomohide SONODA  Rui TOKUNAGA  Koichi SETO  Yukihisa SUZUKI  Kanako WAKE  Soichi WATANABE  Masao TAKI  

     
    PAPER-Biological Effects

      Vol:
    E88-B No:8
      Page(s):
    3287-3293

    In this paper, dosimetry of an in vitro exposure apparatus based on a cylindrical waveguide is performed. The SAR distributions are first obtained numerically by using FDTD method. The thermal fields in the medium are then estimated by numerical calculations of the equation of heat conduction. The maximum temperature rise for 17.9 W/kg average SAR during 3000 s exposure is about 2 on the bottom of the medium where cells are located. The thermal distribution is relatively uniform near the center of the dish and the temperature in this region is around 38.7. The results of the numerical calculation are experimentally supported. The results provide the electromagnetic and thermal characteristics of the exposure apparatus, which will define the exposure conditions of the planned experiments using this apparatus.

  • Electrically Small Antennas with Miniaturized Impedance Matching Circuits for Semiconductor Amplifiers

    Keiji YOSHIDA  Yukako TSUTSUMI  Haruichi KANAYA  

     
    PAPER-Active Circuits & Antenna

      Vol:
    E88-C No:7
      Page(s):
    1368-1374

    In order to reduce the size of a wireless system, we propose a design theory for the broadband impedance matching circuit which connects an electrically small antenna (ESA) to a semiconductor amplifier. We confirmed its validity for the case of connection between a small slot loop antenna with a small radiation resistance of Ra =0.776 Ω and a semiconductor amplifier with high input impedance of ZL =321-j871 Ω with the aid of the simulations by the electrical circuits using transmission lines as well as the electromagnetic field (EM field) simulator. We also made experiments on this antenna with matching circuits using high temperature superconductor YBCO thin films on MgO substrates.

  • Low-Phase Noise Photonic Millimeter-Wave Generator Using an AWG Integrated with a 3-dB Combiner

    Akihiko HIRATA  Hiroyoshi TOGO  Naofumi SHIMIZU  Hiroshi TAKAHASHI  Katsunari OKAMOTO  Tadao NAGATSUMA  

     
    PAPER-Millimeter-Wave Technologies

      Vol:
    E88-C No:7
      Page(s):
    1458-1464

    We present a low-phase-noise and frequency-tunable photonic millimeter-wave (MMW) generator based on two-mode beating. The generator consists of a single-mode laser, an external optical intensity modulator, and a planar lightwave circuit (PLC) on which an arrayed-waveguide grating (AWG) and 3-dB optical combiners are integrated. Because the AWG and the optical combiners are connected with optical waveguides and the optical path length difference between the two modes filtered by the AWG is kept constant, the phase fluctuation of the generated MMW signal is suppressed. The generator can generate MMWs with a phase noise of less than -75 dBc/Hz at 100 Hz and has a frequency tunability in a range of 90 to 125 GHz. The generator can be applied for the local oscillator (LO) in 10-Gbit/s wireless links that use heterodyne detection.

  • Miniaturized High-Temperature Superconducting Microstrip and Coplanar Waveguide Filters

    Zhewang MA  Yoshio KOBAYASHI  

     
    PAPER-Resonators & Filters

      Vol:
    E88-C No:7
      Page(s):
    1406-1411

    Two types of miniaturized high-temperature superconducting filters are described in this paper. The first type is developed by using small-sized microstrip spiral resonators, and the second type by coplanar waveguide quarter-wavelength resonators. The filters have significantly reduced size compared with many previous HTS filters. They are designed by employing an electromagnetic simulator in combination with appropriately chosen equivalent circuits. Their measured frequency responses agree well with theoretical predictions, and show low insertion losses in spite of their small sizes.

  • Radiation Characteristics of NRD-Guide-Compatible Pyramidal Horn Antenna at 60 GHz

    Futoshi KUROKI  Tsukasa YONEYAMA  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:7
      Page(s):
    1523-1525

    A technique to control the radiation pattern of an NRD-guide-compatible pyramidal horn antenna, which consists of a tapered dielectric rod inserted into the horn, was developed for multiple access LAN applications at 60 GHz. By using this simple technique, the half-power beamwidth can be controlled from 11to 40.

  • A Half-Sized Post-Wall Short-Slot Directional Coupler with Hollow Rectangular Holes in a Dielectric Substrate

    Shin-ichi YAMAMOTO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Passive Circuits

      Vol:
    E88-C No:7
      Page(s):
    1387-1394

    The authors realize a 50% length reduction of short-slot couplers in a post-wall dielectric substrate by two techniques. One is to introduce hollow rectangular holes near the side walls of the coupled region. The difference of phase constant between the TE10 and TE20 propagating modes increases and the required length to realize a desired dividing ratio is reduced. Another is to remove two reflection-suppressing posts in the coupled region. The length of the coupled region is determined to cancel the reflections at both ends of the coupled region. The total length of a 4-way Butler matrix can be reduced to 48% in comparison with the conventional one and the couplers still maintain good dividing characteristics; the dividing ratio of the hybrid is less than 0.1 dB and the isolations of the couplers are more than 20 dB.

  • Reconfigurable Information-Sharing Network System Based on a Cyclic-Frequency AWG and Wavelength-Tunable Lasers

    Akira OKADA  Hiromasa TANOBE  Morito MATSUOKA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E88-B No:6
      Page(s):
    2449-2455

    We propose an information-sharing network system, capable of forming and dynamically reconfiguring multiple information-sharing groups on the same network platform by using wavelength routing and distributed shared memory technologies. The network system comprises information-sharing terminal nodes equipped with a shared memory and a wavelength-tunable transmitter, network management terminal and an arrayed-waveguide grating (AWG). The information-sharing terminal nodes are connected to an AWG by a pair of optical fibers, forming a star-shaped topology. Information is shared among the information-sharing terminal nodes through the establishment of a logical information-sharing ring. This is accomplished by adjusting the output of the wavelength-tunable transmitter at each terminal node to an appropriate wavelength according to the wavelength-routing characteristics of the AWG wavelength router. We developed a prototype information-sharing network system, in which, as preliminary experiments, HDTV and SDTV videos were used for real-time information sharing. The dynamic reconfiguration of information-sharing groups and a simple automatic restoration technique have been successfully demonstrated. The system is applicable to distributed computer processing systems and high-capacity information-sharing applications such as high-quality videoconferences.

  • Reflection Characteristics of Center-Feed Single-Layer Waveguide Arrays

    Yasuhiro TSUNEMITSU  SeHyun PARK  Jiro HIROKAWA  Makoto ANDO  Yohei MIURA  Yasuhiro KAZAMA  Naohisa GOTO  

     
    PAPER

      Vol:
    E88-B No:6
      Page(s):
    2313-2319

    The reflection characteristics of large alternating-phase fed single-layer waveguide arrays with center-feeds are investigated to identify the mechanism for bandwidth narrowing effects. Firstly, the overall reflection for the whole array is analyzed by FEM and fine agreement with measurements is demonstrated. It is deviating from the conventional prediction based upon a simple sum of reflections from components in the array, such as the multiple-way power divider, the slot waveguides and the aperture at the antenna input. Careful diagnosis reveals that the mutual coupling between the alternating phase waveguides via external half-space is the key factor in reflection accumulation. Amongst all, the slot with strong excitation whose position depends upon the aperture illumination design produces the dominant contribution in the mutual coupling.

  • A Novel Micromachined Frequency Tripler Hybrid Component for Integrated Millimeter Wave Subsystems

    Wai Heng CHOW  David Paul STEENSON  

     
    PAPER

      Vol:
    E88-B No:6
      Page(s):
    2383-2390

    A fully integrated broadband distributed frequency tripler, periodically loaded with HBV devices, has been designed and fabricated and has demonstrated the generation of a broad range of output frequencies of up to 570 GHz. Key to the design is the principle that the entire frequency tripler circuit is produced monolithically and incorporates novel HBV devices electrically and mechanically interconnected by a thin low-loss SU-8 membrane. With the device fabrication approach used, the novel HBV devices are able to produce a higher capacitance-voltage swing ratio whilst simultaneously minimizing the device series and contact resistances to achieve the optimum conversion efficiency. The entire concept of this work was to design a cost effective fully integrated waveguide package, with the frequency tripler circuit mounted at the E-plane of a micromachined waveguide which was constructed with stepped height and width to prevent the propagation of higher order modes inside the waveguide sections. The micromachined waveguide sections exhibit high dimensional accuracy and a good surface finish which is necessary for the efficient propagation of high frequency signals. The frequency tripler circuit and the accompanying micromachined waveguide sections are mounted in a specifically designed metal test fixture to form a compact and cost-effective subcomponent with great commercial potential for broadband harmonic generation of up to terahertz frequencies. This paper presents the design methodology and techniques used to produce the frequency tripler package, together with some initial measurement results.

  • Wavelength Demultiplexing and Optical Deflection in Variable Refractive-Index Waveguide Array Based on Selectively Grown GaInAs/InP MQW Structure

    Yasumasa KAWAKITA  Suguru SHIMOTAYA  Daisuke MACHIDA  Kazuhiko SHIMOMURA  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E88-C No:5
      Page(s):
    1013-1019

    A GaInAs/InP multiple quantum well (MQW)-based wavelength demultiplexer composed of a waveguide array in which the refractive index varies across the array yielded successful results of wavelength demultiplexing and optical deflection. Since optical path length differences between waveguides in the array are achieved through refractive-index differences controlled by the SiO2 mask design in selective metal-organic vapor phase epitaxy (MOVPE), a straight waveguide grating can be formed with reduced optical propagation losses. A straight waveguide array device with a 1.4% refractive-index difference was fabricated. The fabrication of a preliminary wavelength demultiplexer was also achieved, for which a wavelength separation with an approximately 25 nm spacing and free spectral range (FSR) of approximately 100 nm were obtained. Moreover, an optical deflector was investigated and primitive deflection was achieved at 1460 and 1490 nm incident wavelengths.

221-240hit(507hit)