The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Waveguide(507hit)

21-40hit(507hit)

  • Single-Mode Condition of Chalcogenide Glass Channel Waveguides for Integrated Optical Devices Operated across the Astronomical N-Band

    Takashi YASUI  Jun-ichiro SUGISAKA  Koichi HIRAYAMA  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2021/01/13
      Vol:
    E104-C No:8
      Page(s):
    386-389

    In this study, we conduct guided mode analyses for chalcogenide glass channel waveguides using As2Se3 core and As2S3 lower cladding to determine their single-mode conditions across the astronomical N-band (8-12µm). The results reveal that a single-mode operation over the band can be achieved by choosing a suitable core-thickness.

  • Spatial Single Dimensional Mode Based De-Multiplexer Using Slab Waveguide

    Haisong JIANG  Mahmoud NASEF  Kiichi HAMAMOTO  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2020/10/19
      Vol:
    E104-C No:5
      Page(s):
    164-167

    This paper reports a single dimensional mode based multiplexer / de-multiplexer using the slab waveguide to realize high modes multiplexing and high integration in the non-MIMO (multi-in multi-out) multimode transmission system. A sufficient mode crosstalk of -20 dB was obtained by selecting suitable parameters of the spacing between the connecting positions of each arrayed waveguide Di, the radius slab waveguide R0 and lateral V-parameter.

  • Phase Stabilization by Open Stubs for Via-Less Waveguide to Microstrip Line Transition

    Takashi MARUYAMA  Shigeo UDAGAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/11/05
      Vol:
    E104-B No:5
      Page(s):
    530-538

    We have proposed a waveguide to microstrip line transition, which perpendicularly connects one waveguide into two microstrip lines. It consists of only a waveguide and a dielectric substrate with copper foils. A backshort waveguide for typical transitions is not needed. Additionally, the transition does not require via holes on the substrate. These innovations simplify the structure and the manufacturing process. We assume that our transition and antennas are co-located on the substrate. We reduced the undesirable radiation from the transition so as not to contaminate the desirable radiation pattern. In this paper, we address output phase of our transition. Since the transition has two MSL output ports connecting to different radiation elements, the phase error between two dividing signals leads to beam shift in the radiation pattern. Unfortunately, misalignment of etching pattern between copper layers of the substrate is unavoidable. The structural asymmetry causes the phase error. In order to tolerate the misalignment, we propose to add a pair of open stubs to the transition. We show that the structure drastically stabilizes the output phase. Though the stubs create some extra radiation, we confirm that the impact is not significant. Moreover, we fabricate and measure a prototype antenna that uses the transition. In the case of with stubs, the radiation pattern is unchanged even if the misalignment is severe.

  • A Suspended Stripline Fed Dual-Polarized Open-Ended Waveguide Subarray with Metal Posts for Phased Array Antennas

    Narihiro NAKAMOTO  Toru TAKAHASHI  Toru FUKASAWA  Naofumi YONEDA  Hiroaki MIYASHITA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/09/09
      Vol:
    E104-B No:3
      Page(s):
    295-303

    This paper proposes a dual linear-polarized open-ended waveguide subarray designed for use in phased array antennas. The proposed subarray is a one-dimensional linear array that consists of open-ended waveguide antenna elements and suspended stripline feed networks to realize vertical and horizontal polarizations. The antenna includes a novel suspended stripline-to-waveguide transition that combines double- and quad-ridge waveguides to minimize the size of the transition and enhance the port isolation. Metal posts are installed on the waveguide apertures to eliminate scan-blindness. Prototype subarrays are fabricated and tested in an array of 16 subarrays. The experimental tests and numerical simulations indicate that the prototype subarray offers a low reflection coefficient of less than -11.4dB, low cross-polarization of less than -26dB, and antenna efficiency above 69% in the frequency bandwidth of 14%.

  • 180-Degree Branch Line Coupler Composed of Two Types of Iris-Loaded Waveguides

    Hidenori YUKAWA  Yu USHIJIMA  Naofumi YONEDA  Moriyasu MIYAZAKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/08/14
      Vol:
    E104-C No:2
      Page(s):
    85-92

    We propose a 180-degree branch line coupler composed of two types of iris-loaded waveguides. The proposed coupler consists of two main transmission lines and branch lines with different electrical lengths. Based on optimal electrical lengths, a 180-degree output phase difference can be achieved without additional phase shifters. The two main lines with different electrical lengths are realized by capacitive and inductive iris-loaded waveguides. The size of the proposed coupler is nearly half that of the conventional 180-degree branch line coupler with additional phase shifters. Thus, the proposed coupler is of advantage with respect to the conventional one. We designed a proposed coupler in the K-band for satellite communication systems. The measurement results demonstrate a reflection of -20 dB, isolation of -20 dB, coupling response of -3.1+0.1 dB/-0.1 dB, and phase differences of 0+0.1 deg/-1.4 deg and -180+0.5 deg/-2.3 deg at a bandwidth of 8% in the K-band.

  • S11 Calibration of Cut-Off Circular Waveguide with Three Materials and Related Application to Dielectric Measurement for Liquids Open Access

    Kouji SHIBATA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/08/14
      Vol:
    E104-C No:2
      Page(s):
    93-101

    A method for the calibration of S11 at the front surface of a material for a coaxial-feed type cut-off circular waveguide with three reference materials inserted and no short termination condition was proposed as a preliminary step for dielectric measurement in liquids. The equations for jig calibration of S11 with these reference materials were first defined, and the electrostatic capacitance for the analytical model unique to the jig was quantified by substituting the reflection constant (calculated at frequencies of 0.50, 1.5 and 3.0 GHz using the mode-matching (MM) technique) into the equivalent circuit, assuming the sample liquid in the jig. The accuracy of S11 measured using the proposed method was then verified. S11 for the front surface of the sample material was also measured with various liquids in the jig after calibration, and the dielectric constants of the liquids were estimated as an inverse problem based on comparison of S11 calculated from an analytical model using EM analysis via the MM technique with the measured S11 values described above. The effectiveness of the proposed S11 calibration method was verified by comparison with dielectric constants estimated after S11 SOM (short, open and reference material) calibration and similar, with results showing favorable agreement with each method.

  • Boundary Integral Equations Combined with Orthogonality of Modes for Analysis of Two-Dimensional Optical Slab Waveguide: Single Mode Waveguide

    Masahiro TANAKA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2020/06/22
      Vol:
    E104-C No:1
      Page(s):
    1-10

    New boundary integral equations are proposed for two-port slab waveguides which satisfy single mode condition. The boundary integral equations are combined with the orthogonality of guided mode and non-guided field. They are solved by the standard boundary element method with no use of mode expansion technique. Reflection and transmission coefficients of guided mode are directly determined by the boundary element method. To validate the proposed method, step waveguides for TE wave incidence and triangular rib waveguides for TM wave incidence are investigated by numerical calculations.

  • Concept Demonstration of 3D Waveguides Shuffle Converter for Multi-Core Fiber/Single-Mode Fiber Fan-in Fan-out Configuration Toward Over 1,000 Port Count

    Haisong JIANG  Yasuhiro HINOKUMA  Sampad GHOSH  Ryota KUWAHATA  kiichi HAMAMOTO  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2020/05/25
      Vol:
    E104-C No:1
      Page(s):
    34-36

    A novel shuffle converter by using 3D waveguide of MCF (multi-core fiber)/SMF (single mode fiber) ribbon fan-in fan-out configuration towards over 1,000 port count optical matrix switch has been proposed. The shuffle converter enables to avoid waveguide crossing section in the optical matrix switch configuration, and the principle device showed sufficient crosstalk of less than -54.2 dB, and insertion loss of 2.1 dB successfully.

  • Flex-LIONS: A Silicon Photonic Bandwidth-Reconfigurable Optical Switch Fabric Open Access

    Roberto PROIETTI  Xian XIAO  Marjan FARIBORZ  Pouya FOTOUHI  Yu ZHANG  S. J. Ben YOO  

     
    INVITED PAPER

      Pubricized:
    2020/05/14
      Vol:
    E103-B No:11
      Page(s):
    1190-1198

    This paper summarizes our recent studies on architecture, photonic integration, system validation and networking performance analysis of a flexible low-latency interconnect optical network switch (Flex-LIONS) for datacenter and high-performance computing (HPC) applications. Flex-LIONS leverages the all-to-all wavelength routing property in arrayed waveguide grating routers (AWGRs) combined with microring resonator (MRR)-based add/drop filtering and multi-wavelength spatial switching to enable topology and bandwidth reconfigurability to adapt the interconnection to different traffic profiles. By exploiting the multiple free spectral ranges of AWGRs, it is also possible to provide reconfiguration while maintaining minimum-diameter all-to-all interconnectivity. We report experimental results on the design, fabrication, and system testing of 8×8 silicon photonic (SiPh) Flex-LIONS chips demonstrating error-free all-to-all communication and reconfiguration exploiting different free spectral ranges (FSR0 and FSR1, respectively). After reconfiguration in FSR1, the bandwidth between the selected pair of nodes is increased from 50Gb/s to 125Gb/s while an all interconnectivity at 25Gb/s is maintained using FSR0. Finally, we investigate the use of Flex-LIONS in two different networking scenarios. First, networking simulations for a 256-node datacenter inter-rack communication scenario show the potential latency and energy benefits when using Flex-LIONS for optical reconfiguration based on different traffic profiles (a legacy fat-tree architecture is used for comparison). Second, we demonstrate the benefits of leveraging two FSRs in an 8-node 64-core computing system to provide reconfiguration for the hotspot nodes while maintaining minimum-diameter all-to-all interconnectivity.

  • Study on Silicon-Based Polarization Converter Using Asymmetric Slot Waveguide

    Zejun ZHANG  Yasuhide TSUJI  Masashi EGUCHI  Chun-ping CHEN  

     
    BRIEF PAPER

      Pubricized:
    2020/05/01
      Vol:
    E103-C No:11
      Page(s):
    605-608

    A compact optical polarization converter (PC) based on slot waveguide has been proposed in this study. Utilizing the high refractive index contrast between a Si waveguide and SiO2 cladding on the silicon-on-insulator platform, the light beam can be strongly confined in a slot waveguide structure. The proposed PC consists of a square waveguide and an L-shape cover waveguide. Since the overall structure is symmetrically distributed along the axis rotated 45-degree from the horizontal direction, the optical axis of this PC lies in the direction with equi-angle from two orthogonally polarized modes of the input and output ends, which leads to a high polarization conversion efficiency (PCE). 3D FDTD simulation results illustrate that a TE-to-TM mode conversion is achieved with a device length of 8.2 µm, and the PCE exceeds 99.8%. The structural tolerance and wavelength dependence of the PC have also been discussed in detail.

  • PPLN-Based Low-Noise Phase Sensitive Amplification Using an Optical Phase-Locked Pump Open Access

    Takushi KAZAMA  Takeshi UMEKI  Yasuhiro OKAMURA  Koji ENBUTSU  Osamu TADANAGA  Atsushi TAKADA  Ryoichi KASAHARA  

     
    PAPER

      Pubricized:
    2020/05/22
      Vol:
    E103-B No:11
      Page(s):
    1265-1271

    We evaluated the noise properties of a periodically poled lithium niobite phase-sensitive amplifier (PSA) using a phase-locked local oscillator as a pump generated by an optical phase-locked loop (OPLL-LO). To examine whether or not the LO pump generated by an OPLL degrades the noise figure (NF) of the PSA, we compared the noise levels of a PSA using an OPLL-LO with that of one using a master local oscillator (M-LO) that utilizes the master light itself as a pump in the electrical domain. With the OPLL, the phase-locked local light had almost the same frequency noise components as the master light. We observed almost the same output noise spectra for the OPLL-LO PSA and M-LO PSA and confirmed the absence of excess noise components in the OPLL-LO PSA in the 0.1 to 20-GHz range. The OPLL-LO PSA exhibited low-noise amplification with an average NF of 1.7-dB at a 23.2-dB gain within an input power range of -31 to -21dBm, which is a feasible input power for repeater amplifiers used in the optical signal transmission systems. We also investigated the influence of the noisy master light, which emulates the accumulation of optical noise from the amplifiers in the transmission system. The OPLL-LO PSA was highly tolerant to the optical noise because the difference in the NF was negligibly small within a master light OSNR range of 5 to 55dB. These results indicate that the OPLL-LO PSA will be useful as a low-noise repeater amplifier for the spectrally efficient large-capacity photonic networks of the future.

  • Study on Analysis and Fabrication Conditions of Horizontal SiO2 Slot Waveguides Using Nb2O5

    Yoshiki HAYAMA  Katsumi NAKATSUHARA  Shinta UCHIBORI  Takeshi NISHIZAWA  

     
    PAPER

      Pubricized:
    2020/06/05
      Vol:
    E103-C No:11
      Page(s):
    669-678

    Horizontal slot waveguides enable light to be strongly confined in thin regions. The strong confinement of light in the slot region offers the advantages of enhancing the interaction of light with matter and providing highly sensitive sensing devices. We theoretically investigated fundamental characteristics of horizontal slot waveguides using Nb2O5. The coupling coefficient between SiO2 slot and air slot waveguides was calculated. Characteristics of bending loss in slot waveguide were also analyzed. The etching conditions in reactive ion etching needed to obtain a sidewall with high verticality were studied. We propose a process for fabricating horizontal slot waveguides using Nb2O5 thin film deposition and selective etching of SiO2. Horizontal slot waveguides were fabricated that had an SiO2 slot of less than 30 nm SiO2. The propagated light passing through the slot waveguides was also obtained.

  • Nonlinearity Mitigation of PDM-16QAM Signals Using Multiple CSI-OPCs in Ultra-Long-Haul Transmission without Excess Penalty Open Access

    Takeshi UMEKI  Takayuki KOBAYASHI  Akihide SANO  Takuya IKUTA  Masashi ABE  Takushi KAZAMA  Koji ENBUTSU  Ryoichi KASAHARA  Yutaka MIYAMOTO  

     
    PAPER

      Pubricized:
    2020/05/22
      Vol:
    E103-B No:11
      Page(s):
    1226-1232

    We developed a polarization-independent and reserved-band-less complementary spectral inverted optical phase conjugation (CSI-OPC) device using dual-band difference frequency generation based on highly efficient periodically poled LiNbO3 waveguide technologies. To examine the nonlinearity mitigation in a long-haul transmission using a large number of OPCs, we installed a CSI-OPC device in the middle of a pure silica core fiber-based recirculating loop transmission line with a length of 320km. First, we examined the fiber-input power tolerance after 5,120-km and 6,400-km transmission using 22.5-Gbaud PDM-16QAM 10-channel DWDM signals and found a Q-factor improvement of over 1.3dB along with enhanced power tolerance thanks to mitigating the fiber nonlinearity. We then demonstrated transmission distance extension using the CSI-OPC device. The use of multiple CSI-OPCs enables an obvious performance improvements attained by extending the transmission distance from 6,400km to 8,960km, which corresponds to applying the CSI-OPC device 28 times. Moreover, there was no Q-factor degradation for the link in a linear regime after applying the CSI-OPC device more than 16 times. These results demonstrate that the CSI-OPC device can improve the nonlinear tolerance of PDM-16QAM signals without an excess penalty.

  • Sidelobe Suppression in Both the E and H Planes Using Slit Layers over a Corporate-Feed Waveguide Slot Array Antenna Consisting of 2×2-Element Radiating Units

    Haruka ARAKAWA  Takashi TOMURA  Jiro HIROKAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/03/16
      Vol:
    E103-B No:9
      Page(s):
    960-968

    The sidelobe level at tilts around 30-40 degrees in both the E and H planes due to a tapered excitation of units of 2×2 radiation slots is suppressed by introducing slit layers over a corporate-feed waveguide slot array antenna. The slit layers act as averaging the excitation of the adjacent radiating slots for sidelobe suppression in both planes. A 16×16-element array in the 70GHz band is fabricated. At the design frequency, the sidelobe levels at tilts around 30-40 degrees are suppressed from -25.4dB to -31.3dB in the E-plane and from -27.1dB to -38.9dB in the H-plane simultaneously as confirmed by measurements. They are suppressed over the desired range of 71.0-76.0GHz frequencies, compared to the conventional antenna.

  • Design of Compact Long-Wavelength-Pass Filter in Metal-Dielectric-Metal Plasmonic Waveguide with Stubs Using Transmission Line Model

    Koichi HIRAYAMA  Jun-ichiro SUGISAKA  Takashi YASUI  

     
    BRIEF PAPER

      Vol:
    E103-C No:1
      Page(s):
    11-15

    We propose the design method of a compact long-wavelength-pass filter implemented in a two-dimensional metal-dielectric-metal (MDM) waveguide with three stubs using a transmission line model based on a low-pass prototype filter, and present the wavelength characteristics for filters in an MDM waveguide based on 0.5- and 3.0-dB equal-ripple low-pass prototype filters.

  • In situ Observation of Immobilization of Cytochrome c into Hydrophobic DNA Nano-Film

    Naoki MATSUDA  Hirotaka OKABE  Ayako OMURA  Miki NAKANO  Koji MIYAKE  Toshihiko NAGAMURA  Hideki KAWAI  

     
    BRIEF PAPER

      Vol:
    E102-C No:6
      Page(s):
    471-474

    Hydrophobic DNA (H-DNA) nano-film was formed as the surface modifier on a thin glass plate working as a slab optical waveguide (SOWF). Cytochrom c (cytc) molecules were immobilized from aqueous solution with direct contacting to the H-DNA nano-film for 30 minutes. From SOWG absorption spectral changes during automated solution exchange (SE) processes, it was found that about 28.1% of cytc molecules was immobilized in the H-DNA nano-film with keeping their reduction functionality by reducing reagent.

  • Patterning of OLED Glass Substrate for Improving Light Outcoupling Efficiency

    Savanna LLOYD  Tatsuya TANIGAWA  Heisuke SAKAI  Hideyuki MURATA  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    180-183

    In this work, we have successfully patterned OLED glass substrates with a novel Yb-doped femtosecond laser. Such patterns can simultaneously increase the outcoupling efficiency up to 24.4%, as a result of reducing substrate waveguided light by scattering at the substrate/air interface and reduce the viewing angle dependence of the electroluminescent spectra.

  • In situ Observation of Capturing BTB Molecules from Aqueous Solutions with Hydrophobic DNA Nano-Film

    Naoki MATSUDA  Hirotaka OKABE  Ayako OMURA  Miki NAKANO  Koji MIYAKE  Toshihiko NAGAMURA  Hideki KAWAI  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    203-206

    Hydrophobic DNA (H-DNA) nano-film was formed on a thin glass plate of 50μm thick working as a slab optical waveguide. Bromothymol blue (BTB) molecules were immobilized from aqueous solution with direct contacting to the H-DNA nano-film for 20 minutes. From changes in absorption spectra observed with slab optical wave guide (SOWG) during automated solution exchange (SE) processes for 100 times, it was found that about 95% of bromothymol blue (BTB) molecules was immobilized in the H-DNA nano-film with keeping their functionality of color change responsible to pH change in the solution.

  • Metal 3D-Printed T-Junction Ortho-Mode-Transducer with an Offset Stepped Post

    Hidenori YUKAWA  Yu USHIJIMA  Motomi ABE  Takeshi OSHIMA  Naofumi YONEDA  Moriyasu MIYAZAKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E102-C No:1
      Page(s):
    56-63

    We propose a T-junction OMT consisting of an offset stepped post. The offset stepped post contributes to the matching of two rectangular ports at the short circuit, situated at the opposite side walls. The structure without conventional ridges is simple and makes it possible to achieve robust performance. We fabricated a proposed T-junction OMT in a single piece of an aluminum alloy, using a commercial metal 3D-printer. The simple and compact structure with robust performance is proposed to overcome the disadvantages of a 3D-printer, such as fabrication tolerance and surface roughness. The measured results demonstrated a return loss of 22dB and an insertion loss of 0.3dB, with a bandwidth of 8% in the K-band.

  • Method of Moments Based on Electric Field Integral Equation for Three-Dimensional Metallic Waveguide: Single Mode Waveguide

    Masahiro TANAKA  Kazuo TANAKA  

     
    PAPER

      Vol:
    E102-C No:1
      Page(s):
    30-37

    This paper presents the method of moments based on electric field integral equation which is capable of solving three-dimensional metallic waveguide problem with no use of another method. Metals are treated as perfectly electric conductor. The integral equation is derived in detail. In order to validate the proposed method, the numerical results are compared with those in a published paper. Three types of waveguide are considered: step discontinuity waveguide, symmetrical resonant iris waveguide, and unsymmetrical resonant iris waveguide. The numerical results are also verified by the law of conservation of energy.

21-40hit(507hit)