The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

1821-1840hit(22683hit)

  • Essential Roles, Challenges and Development of Embedded MCU Micro-Systems to Innovate Edge Computing for the IoT/AI Age Open Access

    Takashi KONO  Yasuhiko TAITO  Hideto HIDAKA  

     
    INVITED PAPER-Integrated Electronics

      Vol:
    E103-C No:4
      Page(s):
    132-143

    Embedded system approaches to edge computing in IoT implementations are proposed and discussed. Rationales of edge computing and essential core capabilities for IoT data supply innovation are identified. Then, innovative roles and development of MCU and embedded flash memory are illustrated by technology and applications, expanding from CPS to big-data and nomadic/autonomous elements of IoT requirements. Conclusively, a technology roadmap construction specific to IoT is proposed.

  • Evaluation of Heavy-Ion-Induced Single Event Upset Cross Sections of a 65-nm Thin BOX FD-SOI Flip-Flops Composed of Stacked Inverters

    Kentaro KOJIMA  Kodai YAMADA  Jun FURUTA  Kazutoshi KOBAYASHI  

     
    PAPER-Electronic Circuits

      Vol:
    E103-C No:4
      Page(s):
    144-152

    Cross sections that cause single event upsets by heavy ions are sensitive to doping concentration in the source and drain regions, and the structure of the raised source and drain regions especially in FDSOI. Due to the parasitic bipolar effect (PBE), radiation-hardened flip flops with stacked transistors in FDSOI tend to have soft errors, which is consistent with measurement results by heavy-ion irradiation. Device-simulation results in this study show that the cross section is proportional to the silicon thickness of the raised layer and inversely proportional to the doping concentration in the drain. Increasing the doping concentration in the source and drain region enhance the Auger recombination of carriers there and suppresses the parasitic bipolar effect. PBE is also suppressed by decreasing the silicon thickness of the raised layer. Cgg-Vgs and Ids-Vgs characteristics change smaller than soft error tolerance change. Soft error tolerance can be effectively optimized by using these two determinants with only a small impact on transistor characteristics.

  • Silicon Controlled Rectifier Based Partially Depleted SOI ESD Protection Device for High Voltage Application

    Yibo JIANG  Hui BI  Hui LI  Zhihao XU  Cheng SHI  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2019/10/09
      Vol:
    E103-C No:4
      Page(s):
    191-193

    In partially depleted SOI (PD-SOI) technology, the SCR-based protection device is desired due to its relatively high robustness, but be restricted to use because of its inherent low holding voltage (Vh) and high triggering voltage (Vt1). In this paper, the body-tie side triggering diode inserting silicon controlled rectifier (BSTDISCR) is proposed and verified in 180 nm PD-SOI technology. Compared to the other devices in the same process and other related works, the BSTDISCR presents as a robust and latchup-immune PD-SOI ESD protection device, with appropriate Vt1 of 6.3 V, high Vh of 4.2 V, high normalized second breakdown current (It2), which indicates the ESD protection robustness, of 13.3 mA/µm, low normalized parasitic capacitance of 0.74 fF/µm.

  • Latch-Up Immune Bi-Direction ESD Protection Clamp for Push-Pull RF Power Amplifier

    Yibo JIANG  Hui BI  Wei ZHAO  Chen SHI  Xiaolei WANG  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2019/10/09
      Vol:
    E103-C No:4
      Page(s):
    194-196

    For the RF power amplifier, its exposed input and output are susceptible to damage from Electrostatic (ESD) damage. The bi-direction protection is required at the input in push-pull operating mode. In this paper, considering the process compatibility to the power amplifier, cascaded Grounded-gate NMOS (ggNMOS) and Polysilicon diodes (PDIO) are stacked together to form an ESD clamp with forward and reverse protection. Through Transmission line pulse (TLP) and CV measurements, the clamp is demonstrated as latch-up immune and low parasitic capacitance bi-direction ESD protection, with 18.67/17.34V holding voltage (Vhold), 4.6/3.2kV ESD protection voltage (VESD), 0.401/0.415pF parasitic capacitance (CESD) on forward and reverse direction, respectively.

  • Software Development Effort Estimation from Unstructured Software Project Description by Sequence Models

    Tachanun KANGWANTRAKOOL  Kobkrit VIRIYAYUDHAKORN  Thanaruk THEERAMUNKONG  

     
    PAPER

      Pubricized:
    2020/01/14
      Vol:
    E103-D No:4
      Page(s):
    739-747

    Most existing methods of effort estimations in software development are manual, labor-intensive and subjective, resulting in overestimation with bidding fail, and underestimation with money loss. This paper investigates effectiveness of sequence models on estimating development effort, in the form of man-months, from software project data. Four architectures; (1) Average word-vector with Multi-layer Perceptron (MLP), (2) Average word-vector with Support Vector Regression (SVR), (3) Gated Recurrent Unit (GRU) sequence model, and (4) Long short-term memory (LSTM) sequence model are compared in terms of man-months difference. The approach is evaluated using two datasets; ISEM (1,573 English software project descriptions) and ISBSG (9,100 software projects data), where the former is a raw text and the latter is a structured data table explained the characteristic of a software project. The LSTM sequence model achieves the lowest and the second lowest mean absolute errors, which are 0.705 and 14.077 man-months for ISEM and ISBSG datasets respectively. The MLP model achieves the lowest mean absolute errors which is 14.069 for ISBSG datasets.

  • Improving Seeded k-Means Clustering with Deviation- and Entropy-Based Term Weightings

    Uraiwan BUATOOM  Waree KONGPRAWECHNON  Thanaruk THEERAMUNKONG  

     
    PAPER

      Pubricized:
    2020/01/08
      Vol:
    E103-D No:4
      Page(s):
    748-758

    The outcome of document clustering depends on the scheme used to assign a weight to each term in a document. While recent works have tried to use distributions related to class to enhance the discrimination ability. It is worth exploring whether a deviation approach or an entropy approach is more effective. This paper presents a comparison between deviation-based distribution and entropy-based distribution as constraints in term weighting. In addition, their potential combinations are investigated to find optimal solutions in guiding the clustering process. In the experiments, the seeded k-means method is used for clustering, and the performances of deviation-based, entropy-based, and hybrid approaches, are analyzed using two English and one Thai text datasets. The result showed that the deviation-based distribution outperformed the entropy-based distribution, and a suitable combination of these distributions increases the clustering accuracy by 10%.

  • Characterization of Interestingness Measures Using Correlation Analysis and Association Rule Mining

    Rachasak SOMYANONTHANAKUL  Thanaruk THEERAMUNKONG  

     
    PAPER

      Pubricized:
    2020/01/09
      Vol:
    E103-D No:4
      Page(s):
    779-788

    Objective interestingness measures play a vital role in association rule mining of a large-scaled database because they are used for extracting, filtering, and ranking the patterns. In the past, several measures have been proposed but their similarities or relations are not sufficiently explored. This work investigates sixty-one objective interestingness measures on the pattern of A → B, to analyze their similarity and dissimilarity as well as their relationship. Three-probability patterns, P(A), P(B), and P(AB), are enumerated in both linear and exponential scales and each measure's values of those conditions are calculated, forming synthesis data for investigation. The behavior of each measure is explored by pairwise comparison based on these three-probability patterns. The relationship among the sixty-one interestingness measures has been characterized with correlation analysis and association rule mining. In the experiment, relationships are summarized using heat-map and association rule mined. As the result, selection of an appropriate interestingness measure can be realized using the generated heat-map and association rules.

  • The Effect of Axis-Wise Triaxial Acceleration Data Fusion in CNN-Based Human Activity Recognition

    Xinxin HAN  Jian YE  Jia LUO  Haiying ZHOU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/01/14
      Vol:
    E103-D No:4
      Page(s):
    813-824

    The triaxial accelerometer is one of the most important sensors for human activity recognition (HAR). It has been observed that the relations between the axes of a triaxial accelerometer plays a significant role in improving the accuracy of activity recognition. However, the existing research rarely focuses on these relations, but rather on the fusion of multiple sensors. In this paper, we propose a data fusion-based convolutional neural network (CNN) approach to effectively use the relations between the axes. We design a single-channel data fusion method and multichannel data fusion method in consideration of the diversified formats of sensor data. After obtaining the fused data, a CNN is used to extract the features and perform classification. The experiments show that the proposed approach has an advantage over the CNN in accuracy. Moreover, the single-channel model achieves an accuracy of 98.83% with the WISDM dataset, which is higher than that of state-of-the-art methods.

  • Korean-Vietnamese Neural Machine Translation with Named Entity Recognition and Part-of-Speech Tags

    Van-Hai VU  Quang-Phuoc NGUYEN  Kiem-Hieu NGUYEN  Joon-Choul SHIN  Cheol-Young OCK  

     
    PAPER-Natural Language Processing

      Pubricized:
    2020/01/15
      Vol:
    E103-D No:4
      Page(s):
    866-873

    Since deep learning was introduced, a series of achievements has been published in the field of automatic machine translation (MT). However, Korean-Vietnamese MT systems face many challenges because of a lack of data, multiple meanings of individual words, and grammatical diversity that depends on context. Therefore, the quality of Korean-Vietnamese MT systems is still sub-optimal. This paper discusses a method for applying Named Entity Recognition (NER) and Part-of-Speech (POS) tagging to Vietnamese sentences to improve the performance of Korean-Vietnamese MT systems. In terms of implementation, we used a tool to tag NER and POS in Vietnamese sentences. In addition, we had access to a Korean-Vietnamese parallel corpus with more than 450K paired sentences from our previous research paper. The experimental results indicate that tagging NER and POS in Vietnamese sentences can improve the quality of Korean-Vietnamese Neural MT (NMT) in terms of the Bi-Lingual Evaluation Understudy (BLEU) and Translation Error Rate (TER) score. On average, our MT system improved by 1.21 BLEU points or 2.33 TER scores after applying both NER and POS tagging to the Vietnamese corpus. Due to the structural features of language, the MT systems in the Korean to Vietnamese direction always give better BLEU and TER results than translation machines in the reverse direction.

  • Mal2d: 2d Based Deep Learning Model for Malware Detection Using Black and White Binary Image

    Minkyoung CHO  Jik-Soo KIM  Jongho SHIN  Incheol SHIN  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/12/25
      Vol:
    E103-D No:4
      Page(s):
    896-900

    We propose an effective 2d image based end-to-end deep learning model for malware detection by introducing a black & white embedding to reserve bit information and adapting the convolution architecture. Experimental results show that our proposed scheme can achieve superior performance in both of training and testing data sets compared to well-known image recognition deep learning models (VGG and ResNet).

  • Sequential Authentication Using Handwriting Biometrics for Free Response e-Testing

    Taisuke KAWAMATA  Takako AKAKURA  

     
    LETTER-Educational Technology

      Pubricized:
    2020/01/20
      Vol:
    E103-D No:4
      Page(s):
    901-904

    To prevent proxy-test taking among examinees in unsynchronized e-Testing, a previous work proposed an online handwriting authentication. That method was limited to applied for end of each answer. For free response tests that needed to authenticate throughout the answer, we used the Bayesian prior information to examine a sequential handwriting authentication procedure. The evaluation results indicate that the accuracy of this procedure is higher than the previous method in examinees authentication during mathematics exam with referring the Chinese character.

  • Cognition-Based Delay Analysis to Determine the Average Minimum Time Limit for Wireless Sensor Communications

    Kedir MAMO BESHER  Juan-Ivan NIETO-HIPÓLITO  Juan de Dios SÁNCHEZ LÓPEZ  Mabel VAZQUEZ-BRISENO  Raymundo BUENROSTRO MARISCAL  

     
    PAPER

      Pubricized:
    2019/12/26
      Vol:
    E103-D No:4
      Page(s):
    789-795

    End-to-end delay, aiming to realize how much time it will take for a traffic load generated by a Mobile Node (MN) to reach Sink Node (SN), is a principal objective of most new trends in a Wireless Sensor Network (WSN). It has a direct link towards understanding the minimum time delay expected where the packet sent by MN can take to be received by SN. Most importantly, knowing the average minimum transmission time limit is a crucial piece of information in determining the future output of the network and the kind of technologies implemented. In this paper, we take network load and transmission delay issues into account in estimating the Average Minimum Time Limit (AMTL) needed for a health operating cognitive WSN. To further estimate the AMTL based on network load, an end-to-end delay analysis mechanism is presented and considers the total delay (service, queue, ACK, and MAC). This work is proposed to answer the AMTL needed before implementing any cognitive based WSN algorithms. Various time intervals and cogitative channel usage with different application payload are used for the result analysis. Through extensive simulations, our mechanism is able to identify the average time intervals needed depending on the load and MN broadcast interval in any cognitive WSN.

  • Social Behavior Analysis and Thai Mental Health Questionnaire (TMHQ) Optimization for Depression Detection System

    Konlakorn WONGAPTIKASEREE  Panida YOMABOOT  Kantinee KATCHAPAKIRIN  Yongyos KAEWPITAKKUN  

     
    PAPER

      Pubricized:
    2020/01/21
      Vol:
    E103-D No:4
      Page(s):
    771-778

    Depression is a major mental health problem in Thailand. The depression rates have been rapidly increasing. Over 1.17 million Thai people suffer from this mental illness. It is important that a reliable depression screening tool is made available so that depression could be early detected. Given Facebook is the most popular social network platform in Thailand, it could be a large-scale resource to develop a depression detection tool. This research employs techniques to develop a depression detection algorithm for the Thai language on Facebook where people use it as a tool for sharing opinions, feelings, and life events. To establish the reliable result, Thai Mental Health Questionnaire (TMHQ), a standardized psychological inventory that measures major mental health problems including depression. Depression scale of the TMHQ comprises of 20 items, is used as the baseline for concluding the result. Furthermore, this study also aims to do factor analysis and reduce the number of depression items. Data was collected from over 600 Facebook users. Descriptive statistics, Exploratory Factor Analysis, and Internal consistency were conducted. Results provide the optimized version of the TMHQ-depression that contain 9 items. The 9 items are categorized into four factors which are suicidal ideation, sleep problems, anhedonic, and guilty feelings. Internal consistency analysis shows that this short version of the TMHQ-depression has good to excellent reliability (Cronbach's alpha >.80). The findings suggest that this optimized TMHQ-depression questionnaire holds a good psychometric property and can be used for depression detection.

  • Compiler Software Coherent Control for Embedded High Performance Multicore

    Boma A. ADHI  Tomoya KASHIMATA  Ken TAKAHASHI  Keiji KIMURA  Hironori KASAHARA  

     
    PAPER

      Vol:
    E103-C No:3
      Page(s):
    85-97

    The advancement of multicore technology has made hundreds or even thousands of cores processor on a single chip possible. However, on a larger scale multicore, a hardware-based cache coherency mechanism becomes overwhelmingly complicated, hot, and expensive. Therefore, we propose a software coherence scheme managed by a parallelizing compiler for shared-memory multicore systems without a hardware cache coherence mechanism. Our proposed method is simple and efficient. It is built into OSCAR automatic parallelizing compiler. The OSCAR compiler parallelizes the coarse grain task, analyzes stale data and line sharing in the program, then solves those problems by simple program restructuring and data synchronization. Using our proposed method, we compiled 10 benchmark programs from SPEC2000, SPEC2006, NAS Parallel Benchmark (NPB), and MediaBench II. The compiled binaries then are run on Renesas RP2, an 8 cores SH-4A processor, and a custom 8-core Altera Nios II system on Altera Arria 10 FPGA. The cache coherence hardware on the RP2 processor is only available for up to 4 cores. The RP2's cache coherence hardware can also be turned off for non-coherence cache mode. The Nios II multicore system does not have any hardware cache coherence mechanism; therefore, running a parallel program is difficult without any compiler support. The proposed method performed as good as or better than the hardware cache coherence scheme while still provided the correct result as the hardware coherence mechanism. This method allows a massive array of shared memory CPU cores in an HPC setting or a simple non-coherent multicore embedded CPU to be easily programmed. For example, on the RP2 processor, the proposed software-controlled non-coherent-cache (NCC) method gave us 2.6 times speedup for SPEC 2000 “equake” with 4 cores against sequential execution while got only 2.5 times speedup for 4 cores MESI hardware coherent control. Also, the software coherence control gave us 4.4 times speedup for 8 cores with no hardware coherence mechanism available.

  • Graph Cepstrum: Spatial Feature Extracted from Partially Connected Microphones

    Keisuke IMOTO  

     
    PAPER-Speech and Hearing

      Pubricized:
    2019/12/09
      Vol:
    E103-D No:3
      Page(s):
    631-638

    In this paper, we propose an effective and robust method of spatial feature extraction for acoustic scene analysis utilizing partially synchronized and/or closely located distributed microphones. In the proposed method, a new cepstrum feature utilizing a graph-based basis transformation to extract spatial information from distributed microphones, while taking into account whether any pairs of microphones are synchronized and/or closely located, is introduced. Specifically, in the proposed graph-based cepstrum, the log-amplitude of a multichannel observation is converted to a feature vector utilizing the inverse graph Fourier transform, which is a method of basis transformation of a signal on a graph. Results of experiments using real environmental sounds show that the proposed graph-based cepstrum robustly extracts spatial information with consideration of the microphone connections. Moreover, the results indicate that the proposed method more robustly classifies acoustic scenes than conventional spatial features when the observed sounds have a large synchronization mismatch between partially synchronized microphone groups.

  • SOH Aware System-Level Battery Management Methodology for Decentralized Energy Network

    Daichi WATARI  Ittetsu TANIGUCHI  Takao ONOYE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E103-A No:3
      Page(s):
    596-604

    The decentralized energy network is one of the promising solutions as a next-generation power grid. In this system, each house has a photovoltaic (PV) panel as a renewable energy source and a battery which is an essential component to balance between generation and demand. The common objective of the battery management on such systems is to minimize only the purchased energy from a power company, but battery degradation caused by charge/discharge cycles is also a serious problem. This paper proposes a State-of-Health (SOH) aware system-level battery management methodology for the decentralized energy network. The power distribution problem is often solved with mixed integer programming (MIP), and the proposed MIP formulation takes into account the SOH model. In order to minimize the purchased energy and reduce the battery degradation simultaneously, the optimization problem is divided into two stages: 1) the purchased energy minimization, and 2) the battery aging factor reducing, and the trade-off exploration between the purchased energy and the battery degradation is available. Experimental results show that the proposed method achieves the better trade-off and reduces the battery aging cost by 14% over the baseline method while keeping the purchased energy minimum.

  • Malicious Code Detection for Trusted Execution Environment Based on Paillier Homomorphic Encryption Open Access

    Ziwang WANG  Yi ZHUANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/09/20
      Vol:
    E103-B No:3
      Page(s):
    155-166

    Currently, mobile terminals face serious security threats. A Trusted Execution Environment (TEE) which can provide an isolated execution environment for sensitive workloads, is seen as a trusted relay for providing security services for any mobile application. However, mobile TEE's architecture design and implementation strategy are not unbreakable at present. The existing researches lack of detect mechanisms for attack behaviour and malicious software. This paper proposes a Malicious code Detection scheme for Trusted Execution Environment based on Homomorphic Encryption (HE-TEEMD), which is a novel detection mechanism for data and code in the trusted execution environment. HE-TEEMD uses the Paillier additive homomorphic algorithm to implement the signature matching and transmits the ciphertext information generated in the TEE to the normal world for detection by the homomorphism and randomness of the homomorphic encryption ciphertext. An experiment and security analysis proves that our scheme can achieve malicious code detection in the secure world with minimal cost. Furthermore, evaluation parameters are introduced to address the known plaintext attack problem of privileged users.

  • Parameter Estimation for Multiple Chirp Signals Based on Single Channel Nyquist Folding Receiver

    Zhaoyang QIU  Qi ZHANG  Minhong SUN  Jun ZHU  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:3
      Page(s):
    623-628

    The modern radar signals are in a wide frequency space. The receiving bandwidth of the radar reconnaissance receiver should be wide enough to intercept the modern radar signals. The Nyquist folding receiver (NYFR) is a novel wideband receiving architecture and it has a high intercept probability. Chirp signals are widely used in modern radar system. Because of the wideband receiving ability, the NYFR will receive the concurrent multiple chirp signals. In this letter, we propose a novel parameter estimation algorithm for the multiple chirp signals intercepted by single channel NYFR. Compared with the composite NYFR, the proposed method can save receiving resources. In addition, the proposed approach can estimate the parameters of the chirp signals even the NYFR outputs are under frequency aliasing circumstance. Simulation results show the efficacy of the proposed method.

  • Auxiliary-Noise Power-Scheduling Method for Online Secondary Path Modeling in Pre-Inverse Active Noise Control System

    Keisuke OKANO  Takaki ITATSU  Naoto SASAOKA  Yoshio ITOH  

     
    PAPER-Digital Signal Processing

      Vol:
    E103-A No:3
      Page(s):
    582-588

    We propose an auxiliary-noise power-scheduling method for a pre-inverse active noise control (PIANC) system. Conventional methods cannot reduce the power of auxiliary-noise due to the use of the filtered-x least mean square (FxLMS) algorithm. We developed our power-scheduling method for a PIANC system to solve this problem. Since a PIANC system uses a delayed input signal for a control filter, the proposed method delivers stability even if the acoustic path fluctuates. The proposed method also controls the gain of the auxiliary-noise based on the secondary-path-modeling state. The proposed method determines this state by the variation in the power of the secondary-path-modeling-error signal. Thus, the proposed method changes the power-scheduling of the auxiliary-noise. When the adaptive algorithm does not sufficiently converge, the proposed method injects auxiliary-noise. However, auxiliary-noise stops when the adaptive algorithm sufficiently converges. Therefore, the proposed method improves noise reduction performance.

  • Generalized Register Context-Free Grammars

    Ryoma SENDA  Yoshiaki TAKATA  Hiroyuki SEKI  

     
    PAPER

      Pubricized:
    2019/11/21
      Vol:
    E103-D No:3
      Page(s):
    540-548

    Register context-free grammars (RCFG) is an extension of context-free grammars to handle data values in a restricted way. In RCFG, a certain number of data values in registers are associated with each nonterminal symbol and a production rule has the guard condition, which checks the equality between the content of a register and an input data value. This paper starts with RCFG and introduces register type, which is a finite representation of a relation among the contents of registers. By using register type, the paper provides a translation of RCFG to a normal form and ϵ-removal from a given RCFG. We then define a generalized RCFG (GRCFG) where an arbitrary binary relation can be specified in the guard condition. Since the membership and emptiness problems are shown to be undecidable in general, we extend register type for GRCFG and introduce two properties of GRCFG, simulation and progress, which guarantee the decidability of these problems. As a corollary, these problems are shown to be EXPTIME-complete for GRCFG with a total order over a dense set.

1821-1840hit(22683hit)