The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] access(874hit)

461-480hit(874hit)

  • Erlang Capacity of Multi-Service Multi-Access Systems with a Limited Number of Channel Elements According to Separate and Common Operations

    Insoo KOO  Kiseon KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:11
      Page(s):
    3065-3074

    The Erlang capacity of multi-service multi-access systems supporting several different radio access technologies was analyzed and compared according to two different operation methods: the separate and common operation methods, by simultaneously considering the link capacity limit per sector as well as channel element (CE) limit in a base station (BS). In a numerical example with GSM-like and WCDMA-like sub-systems, it is shown that we can get up to 60% Erlang capacity improvement through the common operation method using a near optimum so-called service-based user assignment scheme when there is no CE limit in BS. Even with the worst-case assignment scheme, we can still get about 15% capacity improvement over the separate operation method. However, a limited number of CEs in BS reduces the capacity gains of multi-service multi-access systems in both the common operation and separate operation. In order to fully extract the Erlang capacity of multi-service multi-access systems, an efficient method is needed in order to select a proper number of CE in BS while minimizing the equipment cost.

  • Two-Stage Random-Access Using Two-Hop Relay for Multi-Hop Systems

    Yoichiro MIZUNO  Ryo HASEGAWA  Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER-Spread Spectrum

      Vol:
    E89-A No:10
      Page(s):
    2630-2639

    Higher transmission rates are one of the main characteristics of the fourth-generation (4G*) of mobile communications. These systems are expected to operate at higher frequency bands, which experience larger propagation loss. This results in larger required transmission power, which causes several problems, particularly for uplink communications, as the typical mobile station (MS) has limited transmission power. Multi-hop systems have been proposed to address this problem. In this paper, we consider the issue of random-access (RA) in a multi-hop system. It is clear that a two-hop mobile communication system requires a two-stage RA process. In this paper, we propose a two-stage RA process that is an extension of the RA process of the CDMA-based 3GPP standard. The proposed method uses a hybrid of code division multiple access (CDMA) and Slotted-ALOHA. To realize the proposed two-hop RA, we dedicate one slot for second-hop transmissions in each interval (predefined); we refer to this as the interval slots allocation (ISsA) technique. Numerical analyses and simulations are conducted to evaluate its basic performance in a multi-hop system. The results demonstrate the superior throughput-delay performance of the proposed two-stage RA multi-hop system with ISsA.

  • A New Construction of Optimal p2-Ary Low Correlation Zone Sequences Using Unified Sequences

    Ji-Woong JANG  Jong-Seon NO  Habong CHUNG  

     
    PAPER-Sequences

      Vol:
    E89-A No:10
      Page(s):
    2656-2661

    In this paper, given an integer e and n such that e|n, and a prime p, we propose a method of constructing optimal p2-ary low correlation zone (LCZ) sequence set with parameters (pn-1, pe-1, (pn -1)/(pe -1), 1) from a p-ary sequence of the same length with ideal autocorrelation. The resulting p2-ary LCZ sequence set can be viewed as the generalization of the optimal quaternary LCZ sequence set by Kim, Jang, No, and Chung in respect of the alphabet size. This generalization becomes possible due to a completely new proof comprising any prime p. Under this proof, the quaternary case can be considered as a specific example for p = 2.

  • Compression/Scan Co-design for Reducing Test Data Volume, Scan-in Power Dissipation, and Test Application Time

    Yu HU  Yinhe HAN  Xiaowei LI  Huawei LI  Xiaoqing WEN  

     
    PAPER-Dependable Computing

      Vol:
    E89-D No:10
      Page(s):
    2616-2625

    LSI testing is critical to guarantee chips are fault-free before they are integrated in a system, so as to increase the reliability of the system. Although full-scan is a widely adopted design-for-testability technique for LSI design and testing, there is a strong need to reduce the test data Volume, scan-in Power dissipation, and test application Time (VPT) of full-scan testing. Based on the analysis of the characteristics of the variable-to-fixed run-length coding technique and the random access scan architecture, this paper presents a novel design scheme to tackle all VPT issues simultaneously. Experimental results on ISCAS'89 benchmarks have shown on average 51.2%, 99.5%, 99.3%, and 85.5% reduction effects in test data volume, average scan-in power dissipation, peak scan-in power dissipation, and test application time, respectively.

  • Multiband Mobile Communication System for Wide Coverage and High Data Rate

    Yoshitaka HARA  Kazuyoshi OSHIMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:9
      Page(s):
    2537-2547

    This paper studies a multiband mobile communication system to support both high data rate services and wide service coverage, using high and low frequency resources with different propagation characteristics. In the multiband system, multiple frequency bands are managed by a base station and one of the frequency bands is adaptively allocated to a terminal depending on his channel quality. By limiting the low frequency resources to a terminal not covered by the higher frequencies, the presented multiband system can accommodate many terminals providing wide coverage area, as if all radio resources have low frequency. From numerical results, the multiband system can provide wide service coverage area for much larger number of terminals than conventional systems. It is also found that an appropriate balance of multiple frequency resources is essential to achieve high capacity.

  • On the Sum-Rate Capacity of Multi-User Distributed Antenna System with Circular Antenna Layout

    Jiansong GAN  Shidong ZHOU  Jing WANG  Kyung PARK  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E89-B No:9
      Page(s):
    2612-2616

    In this letter, we investigate the sum-rate capacity of a power-controlled multi-user distributed antenna system (DAS) with antennas deployed symmetrically on a circle. The sum-rate capacity, when divided by user number, is proved to converge to an explicit expression as user number and antenna number go to infinity with a constant ratio. We further show how this theoretical result can be used to optimize antenna deployment. Simulation results are also provided to demonstrate the validity of our analysis and the applicability of the asymptotic results to a small-scale system.

  • A Synchronization Protocol for OFDM-Based Asynchronous Access Networks

    Sanghoon LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:9
      Page(s):
    2638-2640

    To generate multiple orthogonal carriers in an OFDM (Orthogonal Frequency Division Multiplexing) symbol, an FFT (Fast Fourier Transform) and IFFT (Inverse FFT) pair is utilized at the transmitter and the receiver, respectively. Thus, it may be difficult for an MN (Mobile Node) to reconstruct signals received from several BSs (Base Stations), when single FFT module is used. Moreover, when a GPS (Global Position System) is not supported, ICI (Inter Carrier Interference) may occur over multi-cell environments. This paper introduces a synchronization protocol for OFDM-based asynchronous networks that do not use GPS. The network protocol is designed to perform the plug & access radio configuration for next generation networks.

  • The Central Limit Theorem for the Normalized Sums of the MAI for SSMA Communication Systems Using Spreading Sequences of Markov Chains

    Hiroshi FUJISAKI  Gerhard KELLER  

     
    PAPER

      Vol:
    E89-A No:9
      Page(s):
    2307-2314

    We extend the sliding block code in symbolic dynamics to transform J (≥2) sequences of Markov chains with time delays. Under the assumption that the chains are irreducible and aperiodic, we prove the central limit theorem (CLT) for the normalized sums of extended sliding block codes from J sequences of Markov chains. We apply the theorem to the system analysis of asynchronous spread spectrum multiple access (SSMA) communication systems using spreading sequences of Markov chains. We find that the standard Gaussian approximation (SGA) for estimations of bit error probabilities in such systems is the 0-th order approximation of the evaluation based on the CLT. We also provide a simple theoretical evaluation of bit error probabilities in such systems, which agrees properly with the experimental results even for the systems with small number of users and low length of spreading sequences.

  • Adaptive DOA Tracking Approaches for Time-Space System in CDMA Mobile Environments

    Ann-Chen CHANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:8
      Page(s):
    2208-2217

    It was previously shown that the number of array elements must exceed the number of sources for multiple target direction of arrival (DOA) tracking. This is clearly not practical for code-division multiple access (CDMA) communications since the number of mobile users is very large. To overcome the restriction, adaptive angle tracking approaches employing the code-matched filters and parallel Kalman/H∞ algorithms are presented in this paper. The proposed approaches are applied to the base station of a mobile communication system. Different from Kalman prediction algorithm which minimize the squared tracking error, the adaptive H∞ filtering algorithm is a worst case optimization. It minimizes the effect of the worst disturbances (including modeling error of direction matrix models and array structure imperfection, process noise, and measurement noise). Hence, the difficult problem of tracking the crossing mobiles can be successfully handled by using the code-matched filters. Computer simulation is provided for illustrating the effectiveness of the adaptive angle tracking approaches.

  • A Complexity-Reduced Time Alignment Control in Uplink Dynamic Parameter Controlled OF/TDMA

    Ryota KIMURA  Ryuhei FUNADA  Hiroshi HARADA  Shigeru SHIMAMOTO  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E89-B No:8
      Page(s):
    2196-2207

    We have been investigating an orthogonal frequency division multiple access (OFDMA) based cellular system that is called "dynamic parameter controlled orthogonal frequency and time division multiple access (DPC-OF/TDMA)" for the development of beyond third generation (B3G) mobile communication systems. Moreover, we have already proposed a time alignment control (TAC) to compensate propagation delays that induce a multiple-access interference (MAI) in the uplink OFDMA. However, that TAC includes a large amount of computations. This means that it is quite difficult for the OFDMA systems to implement TAC into volume-limited hardware devices such as field programmable gate array (FPGA). Thus, we propose a new complexity-reduced TAC (CRTAC) in this paper. CRTAC can be implemented into such devices easily. In this paper, we show some computer simulation results, and then evaluate the error rate performances of DPC-OF/TDMA employing CRTAC. Moreover, we also show the benefit of the reasonable level of the implementation complexity made by CRTAC.

  • Parallel Interference Cancellation Scheme Based on Sorting Method for a Multi-Carrier DS/CDMA System

    Jaewon PARK  Shiquan PIAO  Yongwan PARK  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:6
      Page(s):
    1781-1792

    In this paper, we introduce a Parallel Interference Canceller (PIC) based on a sorting method to improve the performance in the MC-DS/CDMA environment. A conventional PIC estimates and cancels out all of the MAI (Multiple Access Interference) for each user in parallel. The parallel process ensures a limited delay for the detection of all users. Since the performance of PIC is strongly related to the correct MAI estimation, we introduce an interference cancellation scheme to estimate accurately the MAI of the weaker interferers than the desired signal. The principle of proposed IC (Interference cancellation) scheme is to sort in descending order from the strength of the signal and subtracted by the MAI of the strong interferer from the weak signal. Therefore, the signal of the weak interferer becomes a better estimation. Following this, the output of the front processing is achieved by a rank operation of the signals in an ascending order of strength. Then the strong signal eliminates the improved weak interferer. Resulting from this, the proposed scheme obtains a better BER performance than the conventional PIC, because the accuracy of the strong signal has been improved. However, a disadvantage exists in that the processing time has a slightly longer delay than the PIC-1stage owing to a two step processing, including the sorting one.

  • Error Analysis for Ultra-Wideband DS- and Hybrid DS/TH-CDMA with Arbitrary Chip-Duty

    Mohammad Azizur RAHMAN  Shigenobu SASAKI  Hisakazu KIKUCHI  

     
    PAPER

      Vol:
    E89-A No:6
      Page(s):
    1668-1679

    In this paper, ultra-wideband (UWB) multiple access systems are introduced by using direct-sequence (DS) and hybrid direct-sequence time-hopping (DS/TH) code division multiple access (CDMA) that use arbitrary chip-duty of the spreading sequences. The bit error probabilities are presented. First of all, the variances of the multiple access interference are developed by investigating the collision properties of the signals. Afterward, various approximations are applied. The standard Gaussian approximation (SGA) for the DS system is shown to become extremely optimistic as the chip-duty becomes low. Though the hybrid system performs better, the SGA still remains optimistic. To obtain accurate results, Holtzman's simplified improved Gaussian approximation (SIGA) and Morrow and Lehnert's improved Gaussian approximation (IGA) are used. A shortcoming of the SIGA is rediscovered that renders it unusable for low-duty DS systems, especially, at high signal-to-noise ratio. However, for the hybrid system, the SIGA works as an excellent tool. The IGA is used to get accurate results for the low-duty DS systems. It is shown that lowering of chip-duty by keeping chip rate and chip length unchanged improves performance for asynchronous DS and both asynchronous and synchronous hybrid systems. However, under the same processing gain, a high-duty system performs better than a low-duty system. Performance of synchronous DS system remains independent of chip-duty.

  • Performance Analysis of Dynamic Channel Allocation Based on Reuse Partitioning in Multi-Cell OFDMA Uplink Systems

    Eunsung OH  Myeon-gyun CHO  Seungyoup HAN  Choongchae WOO  Daesik HONG  

     
    PAPER

      Vol:
    E89-A No:6
      Page(s):
    1566-1570

    Our investigation is presented into analysis of the co-channel interference (CCI) statistic in orthogonal frequency-division multiple access (OFDMA) uplink systems. The derived statistic is then used to analyze the performance of reuse partitioning (RP)-based dynamic channel allocation (DCA). Analysis and simulation results show that the performance of DCA in multi-cell environments is noticeably dependent on the CCI. Finally, the results of the analysis yield the optimum RP area for achieving the maximum spectral efficiency.

  • Distributed Channel Access for QoS Control in Link Adaptive Wireless LANs

    Ryoichi SHINKUMA  Junpei MAEDA  Tatsuro TAKAHASHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E89-B No:6
      Page(s):
    1846-1855

    In wireless local area networks (WLANs), the necessity of quality-of-service (QoS) control for uplink flows is increasing because interactive applications are becoming more popular. Fairness between flows transmitted by stations with different physical transmission rates must be ensured in QoS control for link-adaptive WLANs, which are widely used nowadays. We propose a novel distributed access scheme called QC-DCA to satisfy these requirements. QC-DCA adaptively controls the parameters of carrier sense multiple access with collision avoidance (CSMA/CA). QC-DCA has two QoS control functions: guarantee and classification. QC-DCA guarantees target throughputs and packet delays by quickly adjusting CSMA/CA parameters. In QoS classification, the difference of throughputs and packet delays between different QoS classes is maintained. These two functions allow QC-DCA to suppress the unfairness caused by differences of transmission rates in the physical layer. We evaluated the throughput and delay performances of our scheme using computer simulations. The results show the viability of our scheme.

  • Medium Access Control Protocol for Voice Traffic in IEEE 802.11 WLANs

    Jong-Ok KIM  Hideki TODE  Koso MURAKAMI  

     
    PAPER-Network

      Vol:
    E89-B No:5
      Page(s):
    1545-1553

    Recently, voice over WLAN has become an attractive service, and it is expected to be the most popular application in the near future due to its low cost and easy deployment. It has been reported that there occurs unfairness between downlink and uplink in the 802.11 WLAN. This is mainly caused by CSMA/CA employed in DCF. All stations including an AP fairly compete for shared wireless medium. Thus, in particular, the unfairness has an adverse impact on bi-directional voice calls. Downlink voice connections become a primary factor to limit voice capacity. In this paper, we propose a novel medium access protocol, so called DCFmm, in order to improve QoS of downlink voice traffic as well as fairness between bi-directional voice connections. DCFmm is designed to enhance 802.11 DCF, and is fully compatible with the legacy DCF. In addition, it requires only protocol modifications of an AP. Thus, it can be easily implemented into existing 802.11 WLANs. DCFmm is compared with two conventional techniques through computer simulations. Extensive simulation results show that the proposed DCFmm can improve fairness between downlink and uplink, and consequently, support larger number of voice calls than DCF.

  • Suboptimal Decoding of Vector Quantization over a Frequency-Selective Rayleigh Fading CDMA Channel

    Son X. NGUYEN  Ha H. NGUYEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:5
      Page(s):
    1688-1691

    The complexity of the optimal decoding for vector quantization (VQ) in code-division multiple access (CDMA) communications prohibits implementation. It was recently shown in [1] that a suboptimal scheme that combines a soft-output multiuser detector and individual VQ decoders provides a flexible tradeoff between decoder's complexity and performance. The work in [1], however, only considers an AWGN channel model. This paper extends the technique in [1] to a frequency-selective Rayleigh fading channel. Simulation results indicate that such a suboptimal decoder also performs very well over this type of channel.

  • Performance Analysis of Coherent Ultrashort Light Pulse CDMA Communication Systems with Nonlinear Optical Thresholder

    Yasutaka IGARASHI  Hiroyuki YASHIMA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E89-B No:4
      Page(s):
    1205-1213

    We theoretically analyze the performance of coherent ultrashort light pulse code-division multiple-access (CDMA) communication systems with a nonlinear optical thresholder. The coherent ultrashort light pulse CDMA is a promising system for an optical local area network (LAN) due to its advantages of asynchronous transmission, high information security, multiple access capability, and optical processing. The nonlinear optical thresholder is based on frequency chirping induced by self-phase modulation (SPM) in optical fiber, and discriminates an ultrashort pulse from multiple access interference (MAI) with picosecond duration. The numerical results show that the thermal noise caused in a photodetector dominates the bit error rate (BER). BER decreases as the fiber length in the nonlinear thresholder and the photocurrent difference in the photodetector increase. Using the nonlinear optical thresholder allows for the response time of the photodetector to be at least 100 times the duration of the ultrashort pulses. We also show that the optimum cut-off frequency at the nonlinear thresholder to achieve the minimum BER increases with fiber length, the total number of users, and the load resistance in the photodetector.

  • Personal Mesh: A Design of Flexible and Seamless Internet Access for Personal Area Network

    Hoaison NGUYEN  Hiroyuki MORIKAWA  Tomonori AOYAMA  

     
    PAPER

      Vol:
    E89-B No:4
      Page(s):
    1080-1090

    With the proliferation of various types of computing and networking resources in ubiquitous computing environments, an architecture allowing mobile users to flexibly access these resources is desirable. We have focused our attention on the access link resources of devices surrounding users. Our framework named Personal Mesh allows personal devices to seamlessly access the Internet via appropriate access links available in a personal area network. The Personal Mesh deals with two technical issues: access link selection management and a PAN mobility support mechanism. In this paper, we describe the design and implementation of Personal Mesh and show the effectiveness of our system by experiment.

  • Performance Comparison of Two SDMA Approaches for OFDM Signals Using Measured Indoor Channel Data

    Yunjian JIA  Quoc Tuan TRAN  Shinsuke HARA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:4
      Page(s):
    1315-1324

    We have proposed two space division multiple access (SDMA) approaches for OFDM signals: "Virtual Subcarrier Assignment (VISA)" and "Preamble Subcarrier Assignment (PASA)," both of which can enhance the system capacity without significant change of transmitter/receiver structures for already-existing OFDM-based standards such as IEEE802.11a. In order to investigate the performance of the proposed approaches in real wireless scenarios, we conducted a measurement campaign to obtain real channel state data at 5-GHz band in an indoor environment. Using the measured channel data, we can make the performance evaluation realistic. In this paper, after the brief overview of the two proposed SDMA approaches, we describe our measurement campaign in detail. Furthermore, we evaluate the performance of VISA-based system and PASA-based system by computer simulations using the measured channel state data and present a comparative study on the performance of the two proposed SDMA approaches in the realistic wireless environment.

  • Performance Evaluation of Uplink MC-CDMA Systems with Residual Frequency Offset

    Taeyoung KIM  Kyunbyoung KO  Youngju KIM  Daesik HONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:4
      Page(s):
    1455-1458

    This letter evaluates the performance of an uplink multicarrier-code division multiple access (MC-CDMA) system when the frequency offsets of all users are random variables and the frequency offset for the desired user is compensated. The analysis confirms that performance degradation due to frequency offset is negligible if the estimation error of normalized frequency offset for the desired user is less than 10-1.

461-480hit(874hit)