The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] algorithm(2137hit)

841-860hit(2137hit)

  • An Expanded Lateral Interactive Clonal Selection Algorithm and Its Application

    Shangce GAO  Hongwei DAI  Jianchen ZHANG  Zheng TANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E91-A No:8
      Page(s):
    2223-2231

    Based on the clonal selection principle proposed by Burnet, in the immune response process there is no crossover of genetic material between members of the repertoire, i.e., there is no knowledge communication during different elite pools in the previous clonal selection models. As a result, the search performance of these models is ineffective. To solve this problem, inspired by the concept of the idiotypic network theory, an expanded lateral interactive clonal selection algorithm (LICS) is put forward. In LICS, an antibody is matured not only through the somatic hypermutation and the receptor editing from the B cell, but also through the stimuli from other antibodies. The stimuli is realized by memorizing some common gene segment on the idiotypes, based on which a lateral interactive receptor editing operator is also introduced. Then, LICS is applied to several benchmark instances of the traveling salesman problem. Simulation results show the efficiency and robustness of LICS when compared to other traditional algorithms.

  • An Effective GA-Based Scheduling Algorithm for FlexRay Systems

    Shan DING  Hiroyuki TOMIYAMA  Hiroaki TAKADA  

     
    PAPER-System Programs

      Vol:
    E91-D No:8
      Page(s):
    2115-2123

    An advanced communication system, the FlexRay system, has been developed for future automotive applications. It consists of time-triggered clusters, such as drive-by-wire in cars, in order to meet different requirements and constraints between various sensors, processors, and actuators. In this paper, an approach to static scheduling for FlexRay systems is proposed. Our experimental results show that the proposed scheduling method significantly reduces up to 36.3% of the network traffic compared with a past approach.

  • An Efficient Reversible Image Authentication Method

    Seungwu HAN  Masaaki FUJIYOSHI  Hitoshi KIYA  

     
    PAPER

      Vol:
    E91-A No:8
      Page(s):
    1907-1914

    This paper proposes an image authentication method that detects tamper and localizes tampered areas efficiently. The efficiency of the proposed method is summarized as the following three points. 1) This method offers coarse-to-fine tamper localization by hierarchical data hiding so that further tamper detection is suppressed for blocks labeled as genuine in the uppper layer. 2) Since the image feature description in the top layer is hidden over an image, the proposed method enciphers the data in the top layer rather than enciphers all data in all layers. 3) The proposed method is based on the reversible data hiding scheme that does not use highly-costed compression technique. These three points makes the proposed method superior to the conventional methods using compression techniques and methods using multi-tiered data hiding that requires integrity verification in many blocks even the image is genuine. Simulation results show the effectiveness of the proposed method.

  • Accuracy Refinement Algorithm for Mobile Target Location Tracking by Radio Signal Strength Indication Approach

    Erin-Ee-Lin LAU  Wan-Young CHUNG  

     
    PAPER

      Vol:
    E91-A No:7
      Page(s):
    1659-1665

    A novel RSSI (Received Signal Strength Indication) refinement algorithm is proposed to enhance the resolution for indoor and outdoor real-time location tracking system. The proposed refinement algorithm is implemented in two separate phases. During the first phase, called the pre-processing step, RSSI values at different static locations are collected and processed to build a calibrated model for each reference node. Different measurement campaigns pertinent to each parameter in the model are implemented to analyze the sensitivity of RSSI. The propagation models constructed for each reference nodes are needed by the second phase. During the next phase, called the runtime process, real-time tracking is performed. Smoothing algorithm is proposed to minimize the dynamic fluctuation of radio signal received from each reference node when the mobile target is moving. Filtered RSSI values are converted to distances using formula calibrated in the first phase. Finally, an iterative trilateration algorithm is used for position estimation. Experiments relevant to the optimization algorithm are carried out in both indoor and outdoor environments and the results validated the feasibility of proposed algorithm in reducing the dynamic fluctuation for more accurate position estimation.

  • Dynamic Multiple-Threshold Call Admission Control Based on Optimized Genetic Algorithm in Wireless/Mobile Networks

    Shengling WANG  Yong CUI  Rajeev KOODLI  Yibin HOU  Zhangqin HUANG  

     
    PAPER

      Vol:
    E91-A No:7
      Page(s):
    1597-1608

    Due to the dynamics of topology and resources, Call Admission Control (CAC) plays a significant role for increasing resource utilization ratio and guaranteeing users' QoS requirements in wireless/mobile networks. In this paper, a dynamic multi-threshold CAC scheme is proposed to serve multi-class service in a wireless/mobile network. The thresholds are renewed at the beginning of each time interval to react to the changing mobility rate and network load. To find suitable thresholds, a reward-penalty model is designed, which provides different priorities between different service classes and call types through different reward/penalty policies according to network load and average call arrival rate. To speed up the running time of CAC, an Optimized Genetic Algorithm (OGA) is presented, whose components such as encoding, population initialization, fitness function and mutation etc., are all optimized in terms of the traits of the CAC problem. The simulation demonstrates that the proposed CAC scheme outperforms the similar schemes, which means the optimization is realized. Finally, the simulation shows the efficiency of OGA.

  • Energy Efficient Online Routing Algorithm for QoS-Sensitive Sensor Networks

    Sungwook KIM  Sungyong PARK  Sooyong PARK  Sungchun KIM  

     
    LETTER-Network

      Vol:
    E91-B No:7
      Page(s):
    2401-2404

    In this letter, we propose a new energy efficient online routing algorithm for QoS-sensitive sensor networks. An important design principle underlying our algorithm is online decision making based on real time network estimation. This on-line approach gives adaptability and flexibility to solve a wide range of control tasks for efficient network performance. In addition, our distributed control paradigm is practical for real sensor network management. Simulation results indicate the superior performance of our algorithm between energy efficiency and QoS provisioning.

  • An Effective GML Documents Compressor

    Jihong GUAN  Shuigeng ZHOU  Yan CHEN  

     
    PAPER-Database

      Vol:
    E91-D No:7
      Page(s):
    1982-1990

    As GML is becoming the de facto standard for geographic data storage, transmission and exchange, more and more geographic data exists in GML format. In applications, GML documents are usually very large in size because they contain a large number of verbose markup tags and a large amount of spatial coordinate data. In order to speedup data transmission and reduce network cost, it is essential to develop effective and efficient GML compression tools. Although GML is a special case of XML, current XML compressors are not effective if directly applied to GML, because these compressors have been designed for general XML data. In this paper, we propose GPress, a compressor for effectively compressing GML documents. To the best of our knowledge, GPress is the first compressor specifically for GML documents compression. GPress exploits the unique characteristics of GML documents to achieve good performance. Extensive experiments over real-world GML documents show that GPress evidently outperforms XMill (one of the best existing XML compressors) in compression ratio, while its compression efficiency is comparable to the existing XML compressors.

  • Low-Complexity Parallel Systolic Montgomery Multipliers over GF(2m) Using Toeplitz Matrix-Vector Representation

    Chiou-Yng LEE  

     
    PAPER-Circuit Theory

      Vol:
    E91-A No:6
      Page(s):
    1470-1477

    In this paper, a generalized Montgomery multiplication algorithm in GF(2m) using the Toeplitz matrix-vector representation is presented. The hardware architectures derived from this algorithm provide low-complexity bit-parallel systolic multipliers with trinomials and pentanomials. The results reveal that our proposed multipliers reduce the space complexity of approximately 15% compared with an existing systolic Montgomery multiplier for trinomials. Moreover, the proposed architectures have the features of regularity, modularity, and local interconnection. Accordingly, they are well suited to VLSI implementation.

  • Optimizing Markov Model Parameters for Asynchronous Impulsive Noise over Broadband Power Line Communication Network

    Tan-Hsu TAN  San-Yuan HUANG  Ching-Su CHANG  Yung-Fa HUANG  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E91-A No:6
      Page(s):
    1533-1536

    A statistical model based on a partitioned Markov-chains model has previously been developed to represent time domain behavior of the asynchronous impulsive noise over a broadband power line communication (PLC) network. However, the estimation of its model parameters using the Simplex method can easily trap the final solution at a local optimum. This study proposes an estimation scheme based on the genetic algorithm (GA) to overcome this difficulty. Experimental results show that the proposed scheme yields estimates that more closely match the experimental data statistics.

  • Improved Clonal Selection Algorithm Combined with Ant Colony Optimization

    Shangce GAO  Wei WANG  Hongwei DAI  Fangjia LI  Zheng TANG  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E91-D No:6
      Page(s):
    1813-1823

    Both the clonal selection algorithm (CSA) and the ant colony optimization (ACO) are inspired by natural phenomena and are effective tools for solving complex problems. CSA can exploit and explore the solution space parallely and effectively. However, it can not use enough environment feedback information and thus has to do a large redundancy repeat during search. On the other hand, ACO is based on the concept of indirect cooperative foraging process via secreting pheromones. Its positive feedback ability is nice but its convergence speed is slow because of the little initial pheromones. In this paper, we propose a pheromone-linker to combine these two algorithms. The proposed hybrid clonal selection and ant colony optimization (CSA-ACO) reasonably utilizes the superiorities of both algorithms and also overcomes their inherent disadvantages. Simulation results based on the traveling salesman problems have demonstrated the merit of the proposed algorithm over some traditional techniques.

  • A DOA-Based Adaptive Smart Antenna Processor for Cellular Mobile Systems

    Hyung-Rae PARK  Young-Ho YUN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1657-1660

    In this letter we propose an adaptive beamforming algorithm that efficiently suppresses interferences using a structured interference covariance matrix. The proposed algorithm provides high performance by exploiting angle diversity, especially in cellular mobile environments where the angular spread of a received signal is relatively small. We verify the superiority of the proposed algorithm to the well known linearly constrained minimum variance (LCMV) and reference signal-based algorithms.

  • Automatic Facial Skin Segmentation Based on EM Algorithm under Varying Illumination

    Mousa SHAMSI  Reza Aghaiezadeh ZOROOFI  Caro LUCAS  Mohammad Sadeghi HASANABADI  Mohammad Reza ALSHARIF  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E91-D No:5
      Page(s):
    1543-1551

    Facial skin detection is an important step in facial surgical planning like as many other applications. There are many problems in facial skin detection. One of them is that the image features can be severely corrupted due to illumination, noise, and occlusion, where, shadows can cause numerous strong edges. Hence, in this paper, we present an automatic Expectation-Maximization (EM) algorithm for facial skin color segmentation that uses knowledge of chromatic space and varying illumination conditions to correct and segment frontal and lateral facial color images, simultaneously. The proposed EM algorithm leads to a method that allows for more robust and accurate segmentation of facial images. The initialization of the model parameters is very important in convergence of algorithm. For this purpose, we use a method for robust parameter estimation of Gaussian mixture components. Also, we use an additional class, which includes all pixels not modeled explicitly by Gaussian with small variance, by a uniform probability density, and amending the EM algorithm appropriately, in order to obtain significantly better results. Experimental results on facial color images show that accurate estimates of the Gaussian mixture parameters are computed. Also, other results on images presenting a wide range of variations in lighting conditions, demonstrate the efficiency of the proposed color skin segmentation algorithm compared to conventional EM algorithm.

  • Wolf Attack Probability: A Theoretical Security Measure in Biometric Authentication Systems

    Masashi UNE  Akira OTSUKA  Hideki IMAI  

     
    PAPER-Biometrics

      Vol:
    E91-D No:5
      Page(s):
    1380-1389

    This paper will propose a wolf attack probability (WAP) as a new measure for evaluating security of biometric authentication systems. The wolf attack is an attempt to impersonate a victim by feeding "wolves" into the system to be attacked. The "wolf" means an input value which can be falsely accepted as a match with multiple templates. WAP is defined as a maximum success probability of the wolf attack with one wolf sample. In this paper, we give a rigorous definition of the new security measure which gives strength estimation of an individual biometric authentication system against impersonation attacks. We show that if one reestimates using our WAP measure, a typical fingerprint algorithm turns out to be much weaker than theoretically estimated by Ratha et al. Moreover, we apply the wolf attack to a finger-vein-pattern based algorithm. Surprisingly, we show that there exists an extremely strong wolf which falsely matches all templates for any threshold value.

  • Channel Allocation Algorithms for Coexistence of LR-WPAN with WLAN

    Sangjin HAN  Sungjin LEE  Sanghoon LEE  Yeonsoo KIM  

     
    LETTER-Network

      Vol:
    E91-B No:5
      Page(s):
    1627-1631

    This paper presents a coexistence model of IEEE 802.15.4 with IEEE 802.11b interference in fading channels and proposes two adaptive channel allocation schemes. The first avoids the IEEE 802.15.4 interference only and the second avoids both of the IEEE 802.15.4 and IEEE 802.11b interferences. Numerical results show that the proposed algorithms are effective for avoiding interferences and for maximizing network capacity since they select a channel which gives the maximum signal to noise ratio to the system.

  • Interference-Aware Multi-Channel Assignment in Multi-Radio Wireless Mesh Networks

    Seongho CHO  Chong-kwon KIM  

     
    PAPER-Network

      Vol:
    E91-B No:5
      Page(s):
    1436-1445

    Wireless Mesh Network (WMN) is a promising model with benefits in coverage extension and throughput improvement. In WMN, multiple channels are available for improving system performance through concurrent transmission. For maximum utilization, per-node channel quality and inter-channel interference should be considered in multi-channel assignment. We propose a new multi-channel assignment method. First, we model the mesh network connectivity after a multi-graph which has multiple edges between two nodes. From this connectivity graph, we generate a multi-channel conflict graph, then we allocate multiple channels so that they do not overlap, using list coloring algorithm. We also propose a new sub-graph list coloring algorithm to enhance channel allocation performance. From computer simulations, we verify the performance of the algorithm.

  • Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique

    Kazunori SHIMIZU  Nozomu TOGAWA  Takeshi IKENAGA  Satoshi GOTO  

     
    PAPER

      Vol:
    E91-A No:4
      Page(s):
    1054-1061

    Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.

  • Migration Effects of Parallel Genetic Algorithms on Line Topologies of Heterogeneous Computing Resources

    Yiyuan GONG  Senlin GUAN  Morikazu NAKAMURA  

     
    PAPER

      Vol:
    E91-A No:4
      Page(s):
    1121-1128

    This paper investigates migration effects of parallel genetic algorithms (GAs) on the line topology of heterogeneous computing resources. Evolution process of parallel GAs is evaluated experimentally on two types of arrangements of heterogeneous computing resources: the ascending and descending order arrangements. Migration effects are evaluated from the viewpoints of scalability, chromosome diversity, migration frequency and solution quality. The results reveal that the performance of parallel GAs strongly depends on the design of the chromosome migration in which we need to consider the arrangement of heterogeneous computing resources, the migration frequency and so on. The results contribute to provide referential scheme of implementation of parallel GAs on heterogeneous computing resources.

  • A New Blind Equalization Method Based on Negentropy Minimization for Constant Modulus Signals

    Sooyong CHOI  Jong-Moon CHUNG  Wun-Cheol JEONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1207-1210

    A new blind adaptive equalization method for constant modulus signals based on minimizing the approximate negentropy of the estimation error for a finite-length equalizer is presented. We consider the approximate negentropy using nonpolynomial expansions of the estimation error as a new performance criterion to improve the performance of a linear equalizer using the conventional constant modulus algorithm (CMA). Negentropy includes higher order statistical information and its minimization provides improved convergence, performance, and accuracy compared to traditional methods, such as the CMA, in terms of the bit error rate (BER). Also, the proposed equalizer shows faster convergence characteristics than the CMA equalizer and is more robust to nonlinear distortion than the CMA equalizer.

  • Enhancing PC Cluster-Based Parallel Branch-and-Bound Algorithms for the Graph Coloring Problem

    Satoshi TAOKA  Daisuke TAKAFUJI  Toshimasa WATANABE  

     
    PAPER

      Vol:
    E91-A No:4
      Page(s):
    1140-1149

    A branch-and-bound algorithm (BB for short) is the most general technique to deal with various combinatorial optimization problems. Even if it is used, computation time is likely to increase exponentially. So we consider its parallelization to reduce it. It has been reported that the computation time of a parallel BB heavily depends upon node-variable selection strategies. And, in case of a parallel BB, it is also necessary to prevent increase in communication time. So, it is important to pay attention to how many and what kind of nodes are to be transferred (called sending-node selection strategy). In this paper, for the graph coloring problem, we propose some sending-node selection strategies for a parallel BB algorithm by adopting MPI for parallelization and experimentally evaluate how these strategies affect computation time of a parallel BB on a PC cluster network.

  • Modeling Network Intrusion Detection System Using Feature Selection and Parameters Optimization

    Dong Seong KIM  Jong Sou PARK  

     
    PAPER-Application Information Security

      Vol:
    E91-D No:4
      Page(s):
    1050-1057

    Previous approaches for modeling Intrusion Detection System (IDS) have been on twofold: improving detection model(s) in terms of (i) feature selection of audit data through wrapper and filter methods and (ii) parameters optimization of detection model design, based on classification, clustering algorithms, etc. In this paper, we present three approaches to model IDS in the context of feature selection and parameters optimization: First, we present Fusion of Genetic Algorithm (GA) and Support Vector Machines (SVM) (FuGAS), which employs combinations of GA and SVM through genetic operation and it is capable of building an optimal detection model with only selected important features and optimal parameters value. Second, we present Correlation-based Hybrid Feature Selection (CoHyFS), which utilizes a filter method in conjunction of GA for feature selection in order to reduce long training time. Third, we present Simultaneous Intrinsic Model Identification (SIMI), which adopts Random Forest (RF) and shows better intrusion detection rates and feature selection results, along with no additional computational overheads. We show the experimental results and analysis of three approaches on KDD 1999 intrusion detection datasets.

841-860hit(2137hit)