The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] antenna(1134hit)

701-720hit(1134hit)

  • Series-Fed Beam-Scanning Antenna Employing Multi-Stage Configured Microstrip Antennas with Tunable Reactance Devices

    Naoki HONMA  Tomohiro SEKI  Kenjiro NISHIKAWA  Koichi TSUNEKAWA  Kunio SAWAYA  

     
    PAPER

      Vol:
    E88-B No:6
      Page(s):
    2297-2304

    A series-fed beam-scanning array employing a MUlti-Stage Configured microstrip Antenna with Tunable reactance devices (MUSCAT) is proposed. The proposed antenna significantly expands the beam scanning range and achieves high efficiency. This antenna comprises unit element groups, whose elements are placed close to each other and employ tunable reactance devices. Analyses and experiments on the unit element groups show that their multi-stage configuration extends the phase shift range and increases the radiation efficiency, e.g., a 120phase shift and the radiation efficiency of more than 50% are achieved, when three stages are employed. The radiation pattern of the fabricated MUSCAT array antenna comprising eight unit element groups is measured. A beam scanning range of 27, which is greater than twice the beam scanning range of a non-multi-stage configuration, is achieved.

  • Characteristics of Built-In Folded Monopole Antenna for Handsets

    Shogo HAYASHIDA  Tomoki TANAKA  Hisashi MORISHITA  Yoshio KOYANAGI  Kyohei FUJIMOTO  

     
    PAPER

      Vol:
    E88-B No:6
      Page(s):
    2275-2283

    A folded loop antenna for handsets has already been introduced and shown as one of balance-fed antennas for handsets, which is very effective to mitigate the antenna performance degradation due to the body effect. In order to meet the requirements for the latest handsets such as low profile and small size, a folded loop antenna is modified. The antenna, which is possibly built in the handsets, is newly proposed. Low profile and small size is achieved by consisting of the half of low profile folded loop antenna, which has a structure folded loop elements sideways so that the antenna can be placed on the ground plane (GP). In the analysis, the electromagnetic simulator based on the FDTD (Finite Difference Time Domain) method is used and the design parameters useful in practical operation are found. The electromagnetic simulator based on the Method of Moment (MoM) is used to calculate the current distribution on the antenna element and the GP. An example of low profile and small size antenna which has wideband characteristics are designed based on these parameters, and the antenna characteristics such as VSWR, the current distributions and the radiation patterns are compared with Planar Inverted-F Antenna (PIFA), which is one of conventional built-in antennas for handset. As a result, it has been confirmed that the physical volume of the antenna, which has been introduced here, becomes smaller than that of PIFA. In addition, the radiation efficiency of these antennas is measured and the results are compared with each other.

  • Three Beam Switched Top Loaded Monopole Antenna

    Naobumi MICHISHITA  Yuji NAKAYAMA  Hiroyuki ARAI  Kohei MORI  

     
    PAPER

      Vol:
    E88-B No:6
      Page(s):
    2291-2296

    The three beam-switched top-loaded antenna is suited to be applied to a wireless local area network to switch the radiation pattern by arranging several unidirectional antennas. In this paper, a three beam switched top loaded monopole antenna is proposed to realize its small size and planar structure. Three top loaded monopole antennas are arranged around a parasitic hexagonal patch at intervals of 120 degrees. The feed element is selected by the switching device to switch the radiation pattern. This antenna allows for reduction in the number of elements as well as downsizing. The front to back ratio (F/B) becomes 23 dB by selecting suitable parameters.

  • Frequency Correlation Characteristics Due to Antenna Configurations in Broadband MIMO Transmission

    Kentaro NISHIMORI  Nobuhiko TACHIKAWA  Yasushi TAKATORI  Riichi KUDO  Koichi TSUNEKAWA  

     
    PAPER

      Vol:
    E88-B No:6
      Page(s):
    2438-2445

    Recently, Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) has attracted much attention as a technology achieving high-speed wireless transmission with a limited bandwidth. However, since bit loading and adaptive modulation per sub-carrier should be employed according to the transmission quality of each sub-carrier in MIMO-OFDM, it is very important to understand the frequency correlation characteristics in broadband MIMO channels. This paper investigates the frequency correlation characteristics based on the antenna configuration for actual indoor MIMO channels. The results show that the frequency correlation of the channel capacity for the array antenna configured in the horizontal plane is significantly different compared to that configured in the vertical plane. Moreover, we propose a new cluster model that considers the antenna configuration in both the horizontal and vertical planes to estimate the frequency correlation in broadband MIMO channels.

  • An Aperture-Coupled Patch Antenna on Modified-Shape Ground-Plane

    Nobuhiro KUGA  

     
    PAPER-Antennas and Propagation

      Vol:
    E88-B No:6
      Page(s):
    2597-2603

    An aperture-coupled patch antenna on a modified-shape groundplane is proposed in this paper. It is applicable to the H-plane array without perpendicular feed structure. Availability of the depth-area under antenna-substrate is effectively improved by using radiation from the T-shaped element, while the advantage of aperture-coupled antenna in suppressing the spurious-feed-network radiation remains effective. Basic characteristics of the antenna are investigated through the numerical examination by using FDTD-method. As a result, the increased bandwidth is also obtained, which is observed as dual-resonance characteristics due to the T-shaped element and the aperture-fed patch. A H-plane array of the proposed element incorporating a probe-fed patch antenna is also presented to show an potential as a polarization diversity antenna.

  • Improvement on Virtual Subcarrier Assignment (VISA) for Spatial Filtering of OFDM Signals: Multiple Subcarrier Puncturing

    Yunjian JIA  Shinsuke HARA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:6
      Page(s):
    2516-2524

    We have proposed a novel spatial filtering technique named "VIrtual Subcarrier Assignment (VISA)" for orthogonal frequency division multiplexing (OFDM) signals, which enables the transceiver equipped with an adaptive array antenna (AAA) to selectively receive or reject OFDM signals through coloring them with different virtual subcarrier positions in their frequency spectra. In this paper, we develop the VISA to use multiple virtual subcarrier assignment, which assigns a different combination of multiple virtual subcarrier positions in the frequency spectrum to each OFDM signal. Furthermore, we present two kinds of recursive least square (RLS)-based array weight control methods to support the VISA with multiple subcarrier puncturing in an IEEE802.11a-based system and evaluate the link-level performance in typical indoor wireless environments by computer simulations.

  • Small Antennas: Downsizing Techniques and Its Index Factor

    Hiroyuki ARAI  

     
    INVITED PAPER

      Vol:
    E88-B No:5
      Page(s):
    1801-1808

    In this paper, we present the classification of small antennas based on statistical data. The three categories of downsizing methods are loading a matching circuit, changing the current path, and using dielectric/magnetic materials. These categories are explained using several examples. In this paper, we show that the miminum Q value as a fundamental limit defined by an infinitesimal dipole is effective for determining the index factor of small antennas. Radiation efficiency measurements for small antennas are also discussed.

  • Broadband/Multiband Printed Antennas

    Toshikazu HORI  

     
    INVITED PAPER

      Vol:
    E88-B No:5
      Page(s):
    1809-1817

    Broadening the frequency bandwidth of antennas has been one of the major subjects concerning antenna design technologies. Two of the major subjects for microstrip antennas, which appeared in the 1970s, have also been the broadening of the frequency bandwidth and the sharing of multifrequency bands. In this paper, we describe the broadband and multiband techniques of printed antennas, and show the configurations of realized broadband and multiband antennas and their characteristics. Here, resonant-type microstrip antennas, planar monopole antennas, fractal antennas and ultra-wideband printed antennas are introduced. The optimum design techniques using a genetic algorithm are introduced for developing broadband and multiband printed antennas. The usefulness of this method is verified by the simulation and experimental results of the fabricated planar monopole antenna which has ultrawide-band characteristics.

  • Antenna Design by Using Method of Moments

    Kunio SAWAYA  

     
    INVITED PAPER

      Vol:
    E88-B No:5
      Page(s):
    1766-1773

    The theory of the method of moments (MoM), which has been widely used as a numerical technique for analyzing the characteristics of antennas and scatterers, is described. First, the steps of MoM to solve integral equations for conducting wires and planes are presented. It is pointed out that MoM combined with Galerkin's method yields highly accurate results. The importance of ensuring the continuity condition of current on conducting bodies is emphasized and numerical examples for a conducting structure involving junctions of wire segments and planar segments are presented. Finally, MoM for dielectric scatterers including recent developments is described.

  • A Blind Anti-Jammer Pre-Processor for GPS Receiver

    Tsui-Tsai LIN  

     
    LETTER-Antennas and Propagation

      Vol:
    E88-B No:5
      Page(s):
    2215-2219

    In this letter, a new blind anti-jammer pre-processor is proposed for GPS receivers to alleviate performance degradation due to strong jammers. Since strong jammers have been successfully removed before despreading, the proposed scheme can effectively extract the signals-of-interest, leading to significant performance enhancement as compared with conventional methods.

  • Convergence of SOR in MoM Analysis of Array Antenna

    Qiang CHEN  Qiaowei YUAN  Kunio SAWAYA  

     
    LETTER-Antennas and Propagation

      Vol:
    E88-B No:5
      Page(s):
    2220-2223

    Convergence of the iterative method based on the successive overrelaxation (SOR) method is investigated to solve the matrix equation in the moment analysis of array antennas. It is found this method can be applied to the sub domain method of moments with fast convergence if the grouping technique is applied and the over-relaxation parameter is properly selected, and the computation time for solving the matrix equation can be reduced to be almost proportional to the second power of the number of unknowns.

  • Radiation Pattern Analysis of Reflector Antennas--Discussions and Hybrid Use of Physical Optics and Aperture Field Integration Method--

    Makoto ANDO  

     
    INVITED PAPER

      Vol:
    E88-B No:5
      Page(s):
    1790-1800

    This paper reviews the approximation principle of Physical Optics in view of diffraction theory. Two key error factors are identified for PO, that is, 1) errors in edge diffraction coefficients and 2) fictitious penetrating rays. Improved methods named PO-AF and PTD-AF are proposed as the methods which suppress the fictitious penetrating rays from PO and PTD respectively. In deep shadow regions of the reflector antennas, PO-AF and PDT-AF approach to PO-EEC and UTD respectively, while the continuity is assured. The effectiveness is numerically demonstrated for two dimensional scatterers.

  • Antenna Design Using the Finite Difference Time Domain Method

    Toru UNO  

     
    INVITED PAPER

      Vol:
    E88-B No:5
      Page(s):
    1774-1789

    The finite difference time domain (FDTD) method has been developed in tandem with the progress of computer technology since K. S. Yee applied it to the analysis of an electromagnetic problem in 1966. The FDTD method is widely recognized as a powerful computational tool for analyzing electromagnetic problems involving complex geometries, such as antennas, microwave and optical waveguides and interaction between antennas and the human body. The commercial electromagnetic simulators based on the FDTD are also being developed very actively because users are able to trace temporal electromagnetic behaviors and to easily obtain a practical level of accuracy. However, the user must understand the principle of the method in order to use the simulator efficiently. In this paper, the basic concept and the principle of the FDTD method are reviewed for beginners, including graduate course students, rather than specialists in this discipline. Several recent topics concerning electromagnetic and antenna problems are also introduced.

  • Iterative DOA Estimation Using Subspace Tracking Methods and Adaptive Beamforming

    Nobuyoshi KIKUMA  

     
    INVITED PAPER

      Vol:
    E88-B No:5
      Page(s):
    1818-1828

    To understand radio propagation structures and consider signal recovering techniques in mobile communications, it is most effective to estimate the signal parameters (e.g., DOA) of individual incoming waves. Also, in radar systems, it is required to discriminate the desired signal from interference. As one of the high-resolution DOA estimators, MUSIC and ESPRIT have attracted considerable attention in recent years. They need the eigenvectors of the correlation matrix and therefore we have to execute the EVD (eigenvalue decomposition) of correlation matrix. However, the EVD generally brings us a heavy computational load and as a result it is difficult to realize the real-time DOA estimator, which will be useful as a multibeam-forming algorithm for adaptive antennas. This paper focuses on MUSIC and ESPRIT using subspace tracking methods, such as BiSVD, PAST, and PASTd, to carry out iterative DOA estimation. Then, they are compared through computer simulation. Adaptive beamforming based on DCMP and MLM is also mentioned and an example is shown.

  • Enhancement of Data Throughput in the AMC-Employed DS-CDMA Systems through Suppression of Channel Frequency Selectivity by a MTMR Antenna System

    Jaewan KIM  Seiichi SAMPEI  Norihiko MORINAGA  

     
    PAPER-Antennas and Propagation

      Vol:
    E88-B No:4
      Page(s):
    1622-1631

    In this paper, a new algorithm for MTMR adaptive array antenna (AAA) system combined with analog-type transmit power control (TPC) is proposed for DS-CDMA systems in order to employ high level modulation schemes like 64 QAM in wireless multimedia services. A conventional AAA system considering the strongest path as a target path cannot work effectively when angular dispersion between the strongest path and other delayed paths is large, that is, beam selectivity is so small due to severe frequency selective multipath fading. So, in order to solve such a beam selectivity problem, a beam directivity control scheme using a path manipulation technique is introduced for the BS and MS AAA combining in this paper, along with analog-type TPC. It utilizes virtual delay profiles which are modified from the measured complex delay profile and selects a desired path giving the maximum DUR with an optimized weight vector for BS and MS beamforming. We will show through computer simulation that the proposed scheme is very effective in enhancing the data throughput at the downlink of wideband DS-CDMA systems as compared with the conventional system.

  • Fabrication and Measurement of Four L-shaped-Slot Microstrip Patch Antenna for HiperLAN2

    Won-Jong LEE  Suk-Youb KANG  Hwa-Choon LEE  Hyo-Dal PARK  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E88-B No:4
      Page(s):
    1735-1739

    This paper discusses the design, fabrication, and measurement of four L-shaped-slot microstrip patch antenna for HiperLan2. The prototype consists of four L-shaped slots. To obtain suitable bandwidth, the form layer is inserted between the ground plane and substrate. The design considers various important factors that include the four L-slot's length, width, position, air-gap height, and feed-point position. Once these factors are optimized, a four L-shaped slot microstrip patch antenna is fabricated and measured. The measured results of the fabricated four L-shaped slot antenna are as follows: resonant frequency is 5.35 GHz, bandwidth is approximately 8.1% (VSWR < 2.0), and gain is 8-9 dBi. The experimental far-field patterns are stable across the pass band. The 3 dB bandwidth in Elevation and Azimuth are 69and 62, respectively.

  • Location-Aware Power-Efficient Directional MAC Protocol in Ad Hoc Networks Using Directional Antenna

    Tetsuro UEDA  Shinsuke TANAKA  Dola SAHA  Siuli ROY  Somprakash BANDYOPADHYAY  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:3
      Page(s):
    1169-1181

    Use of directional antenna in the context of ad hoc wireless networks can largely reduce radio interference, thereby improving the utilization of wireless medium. Our major contribution in this paper is to devise a MAC protocol that exploits the advantages of directional antenna in ad hoc networks for improved system performance. In this paper, we have illustrated a MAC protocol for ad hoc networks using directional antenna with the objective of effective utilization of the shared wireless medium. In order to implement effective MAC protocol in this context, a node should know how to set its transmission direction to transmit a packet to its neighbors and to avoid transmission in other directions where data communications are already in progress. In this paper, we are proposing a receiver-centric approach for location tracking and MAC protocol, so that, nodes become aware of its neighborhood and also the direction of the nodes for communicating directionally. A node develops its location-awareness from these neighborhood-awareness and direction-awareness. In this context, researchers usually assume that the gain of directional antennas is equal to the gain of corresponding omni-directional antenna. However, for a given amount of input power, the range R with directional antenna will be much larger than that using omni-directional antenna. In this paper, we also propose a two level transmit power control mechanism in order to approximately equalize the transmission range R of an antenna operating at omni-directional and directional mode. This will not only improve medium utilization but also help to conserve the power of the transmitting node during directional transmission. Our proposed directional MAC protocol can be effective in both ITS (Intelligent Transportation System), which we simulate in String and Parallel Topology, and in any community network, which we simulate in Random Topology. The performance evaluation on QualNet network simulator clearly indicates the efficiency of our protocol.

  • Approximate Maximum Likelihood Approach for Code Acquisition in DS-CDMA Systems with Multiple Antennas

    Sangchoon KIM  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E88-B No:3
      Page(s):
    1054-1065

    The problem of estimating code timings in DS-CDMA systems with multiple antennas is considered in the presence of multipath time-varying fading channels and near-far environments. We present an efficient algorithm for an approximate maximum likelihood approach of jointly estimating the multipath timings of a desired user for DS-CDMA systems that consist of multiple antennas either uncorrelated or fully correlated in space. The procedures of the algorithm to estimate code-timings are developed in order to better exploit the time-varying characteristics of the fading process. In the multipath fading channels, the solution of the proposed algorithms is based on successively optimizing the criterion for increasing numbers of multipath delays. It is shown via simulation results that the modified approaches of the approximate maximum likelihood algorithm much more improve its acquisition performance in the time-varying fading channels. It is seen that the acquisition performance of multiple antennas based acquisition scheme is much better than that of a single antenna based timing estimator in the presence of multipath fading channels and the near-far problem. Furthermore, it is observed that the proposed algorithms outperform the correlator and MUSIC estimator in the multiuser environments with near-far situation on time-varying Rayleigh fading channels.

  • Multiuser MIMO Beamforming for Single Data Stream Transmission in Frequency-Selective Fading Channels

    Huy Hoang PHAM  Tetsuki TANIGUCHI  Yoshio KARASAWA  

     
    PAPER

      Vol:
    E88-A No:3
      Page(s):
    651-659

    In this paper, we propose a multiple-input multiple-output (MIMO) beamforming scheme for a multiuser system in frequency-selective fading channels. The maximum signal-to-noise and interference ratio (MSINR) is adopted as a criterion to determine the transmit and receive weight vectors. In order to maximize the output SINR over all users, two algorithms for base station are considered: the first algorithm is based on the receive weight vector optimization and the second algorithm is based on an iterative update of both transmit and receive weight vectors. Based on the result of single user MIMO beamforming, we analyze the interference channels cancellation ability of multiuser MIMO system. The first algorithm is a simple method and the second algorithm is a performative solution. Through computer simulations, it is shown that multiuser communication system is achievable using the proposed methods in frequency-selective fading condition.

  • Characteristic Comparison between Electric Currents on Upper and Lower Surfaces of Patch Conductor in a Microstrip Antenna

    Takafumi FUJIMOTO  Kazumasa TANAKA  Mitsuo TAGUCHI  

     
    PAPER-Antennas and Propagation

      Vol:
    E88-B No:2
      Page(s):
    729-736

    The electric currents on the upper, lower and side surfaces of the patch conductor in a circular microstrip antenna are calculated by using the integral equation method and the characteristic between the electric currents on the upper and lower surfaces is compared. The integral equation is derived from the boundary condition that the tangential component of the total electric field due to the electric currents on the upper, lower and side surfaces of the patch conductor vanishes on the upper, lower and side surfaces of the patch conductor. The electric fields are derived by using Green's functions in a layered medium due to a horizontal and a vertical electric dipole on those surfaces. The result of numerical calculation shows that the electric current on the lower surface is much bigger than that on the upper surface and the input impedance of microstrip antenna depends on the electric current on the lower surface.

701-720hit(1134hit)