Hirokazu YAMAKURA Michihiko SUHARA
We have derived the physics-based equivalent circuit model of a semiconductor-integrated bow-tie antenna (BTA) for expressing its impedance and radiation characteristics as a terahertz transmitter. The equivalent circuit branches and components, consisting of 16 RLC parameters are determined based on electromagnetic simulations. All the values of the circuit elements are identified using the particle swarm optimization (PSO) that is one of the modern multi-purpose optimization methods. Moreover, each element value can also be explained by the structure of the semiconductor-integrated BTA, the device size, and the material parameters.
Makoto HIGAKI Shuichi OBAYASHI Hiroki SHOKI
This paper proposes a multiband automatic tunable antenna system for wide frequency bands of 704-2690MHz for cellular wireless communication systems. The proposed system controls variable capacitors connected between the antenna and a transmitter based on the received power of a probe. Locating the probe near the tip of the antenna enables frequency-a operation. The antenna is a multiband two-arm monopole antenna printed on a 60mm × 10mm area of a 60mm × 100mm FR-4 printed circuit board (PCB). The probe is a small dipole antenna capacitively coupled with the antenna. Fine-tuning based on simple hill-climbing optimization compensates the mismatch due to the surroundings, e.g., a user's hand/head or desk assuming channel-informed rough-tuning beforehand. A prototype consisting of varicap diodes and some other devices demonstrates automatic tunability.
Nguyen Quoc DINH Le Trong TRUNG Xuan Nam TRAN Naobumi MICHISHITA
In this paper, a new MIMO antenna for ultra-wide band (UWB) applications is designed and proposed. The proposed MIMO antenna consists of two single UWB antenna elements, one acts as a magnetic dipole while the other as an electric one, to reduce mutual coupling. In order to reduce further the mutual coupling, a copper stub is used to isolate the two antenna elements. The designed MIMO UWB antenna provides a broad operating bandwidth from 3.1GHz to 10.6GHz, while achieving low mutual coupling and VSWR ≤ 2. Various performance characteristics of the antenna such as radiation patterns, VSWR, and the maximal gain are thoroughly investigated by simulations and experiments.
Ramesh KUMAR Abdul AZIZ Inwhee JOE
In this paper, we propose and analyze the opportunistic amplify-and-forward (AF) relaying scheme using antenna selection in conjunction with different adaptive transmission techniques over Rayleigh fading channels. In this scheme, the best antenna of a source and the best relay are selected for communication between the source and destination. Closed-form expressions for the outage probability and average symbol error rate (SER) are derived to confirm that increasing the number of antennas is the best option as compared with increasing the number of relays. We also obtain closed-form expressions for the average channel capacity under three different adaptive transmission techniques: 1) optimal power and rate adaptation; 2) constant power with optimal rate adaptation; and 3) channel inversion with a fixed rate. The channel capacity performance of the considered adaptive transmission techniques is evaluated and compared with a different number of relays and various antennas configurations for each adaptive technique. Our derived analytical results are verified through extensive Monte Carlo simulations.
Ryoji YAMAUCHI Takeshi FUKUSAKO
An L-shaped probe with a surrounding aperture such as a waveguide can generate circular polarization (CP) waves. Circular waveguide antennas using an L-shaped probe have broadband characteristics both in axial ratio (AR) and in input impedance, however cross-polarization (XPOL) is easily generated due to its asymmetrical structure resulting in a radiation pattern that has narrow CP azimuth range. In this paper, design techniques to reduce the XPOL generated from a circular waveguide antenna using an L-shaped probe are proposed. As a result, XPOL is reduced by around 10 dB, and CP is radiated over a wide angle range of 120-150° covering frequencies from 7.35 to 9.75GHz.
Takashi YANAGI Toru FUKASAWA Hiroaki MIYASHITA
In this paper, a measurement method for the impedance and mutual coupling of multi-antennas that we have proposed is summarized. Impedance and mutual coupling characteristics are obtained after reducing the influence of the coaxial cables by synthesizing the measured S-parameters under the condition that unbalanced currents on the outside of the coaxial cables are canceled at feed points. We apply the proposed method to two closely positioned monopole antennas mounted on a small ground plane and demonstrate the validity and effectiveness of the proposed method by simulation and experiment. The proposed method is significantly better in terms of the accuracy of the mutual coupling data. In the presented case, the errors at the resonant frequency of the antennas are only 0.5dB in amplitude and 1.8° in phase.
Michio TAKIKAWA Yoshio INASAWA Hiroaki MIYASHITA Izuru NAITO
We investigate a phased array-fed dual reflector antenna applying one-dimensional beam-scanning of the center-fed type, using an elliptical aperture to provide wide area observation. The distinguishing feature of this antenna is its elliptical aperture shape, in which the aperture diameter differs between the forward satellite direction and the cross-section orthogonal to it. The shape in the plane of the forward satellite direction, which does not have a beam-scanning function, is a ring-focus Cassegrain antenna, and the shape in the plane orthogonal to that, which does have a beam-scanning function, is an imaging reflector antenna. This paper describes issues which arose during design of the elliptical aperture shape and how they were solved, and presents design results using elliptical aperture dimensions of 1600 mm × 600 mm, in which the beam width differs by more than two times in the orthogonal cross-section. The effectiveness of the antenna was verified by fabricating a prototype antenna based on the design results. Measurement results confirmed that an aperture efficiency of 50% or more could be achieved, and that a different beam width was obtained in the orthogonal plane in accordance with design values.
Dongming WANG Heping GU Hao WEI Xiaoxia DUAN Chunguo LI Xiaohu YOU
In this paper, we study the spectral efficiency of the uplink multi-user large-scale distributed antenna systems (DAS) with imperfect channel state information. We propose the system model of multi-user DAS and illustrate the necessity of pilot reuse. Then, we derive the sum-rate of the system under pilot contamination. Furthermore, we investigate the asymptotical performance when the number of antennas goes to infinity. To reduce the pilot contamination, we present two novel pilot assignment algorithms to improve the spectral efficiency. Finally, we evaluate our proposed strategies through extensive simulations which show that compared with random pilot reuse, the min-max algorithm shows impressive performance with low complexity.
Hien Ba CHU Hiroshi SHIRAI Chien Dao NGOC
A simple approach is presented for designing an antipodal Vivaldi antenna in this paper. A new and better estimation of the low frequency end of the operational range is shown. Final dimensions of the antenna parameters are determined by using the High Frequency Structure Simulator (HFSS). The proposed antenna has a simple configuration but exhibits low return loss, good radiation characteristics, and high and flat gain in the operating ultra wideband frequency range (3.1-10.6 GHz). Lastly, the fabrication has been done along with the specification to confirm the properties by measurements.
A link adaptation scheme is devised for vector-perturbation (VP) zero-forcing beamforming (ZFBF) MIMO precoding and a link-adaptable VP-ZFBF precoder is applied to multi-point three-dimensional (3D) beamformers to be used in mmWave-band wireless access systems. Channel coding schemes used in current systems, e.g., turbo codes, possess systematic code structures. The VP gain can thus be predicted by searching for perturbation vectors for the symbol vectors mapped from information bits. On the basis of this principle, we constructed an efficient iterative modulation-and-coding-set (MCS) selection procedure for VP-ZFBF precoding. Simulation results demonstrate that our proposed scheme suitably passed on the VP gain to the selection of an appropriate higher-rate MCS index and thus achieved high throughputs by incorporating with multi-point 3D-beamformers.
Masataka OHIRA Kazuma YAMANAKA Zhewang MA
This paper proposes a new design formula of coupling coefficient between antenna and resonator for an efficient design of filtering antennas consisting of an antenna and resonators. The filtering antenna can be designed by introducing a well-established filter design theory. For such a design approach, an external Q factor at input port, coupling coefficients, and a radiation Q factor of the antenna need to be evaluated. However, conventional design methods have a time-consuming procedure, since there are no effective techniques to evaluate the coupling coefficient between resonator and antenna. To solve the problem, we derive the new design formula using only amplitude property of input reflection responses obtained from a coupled structure of resonator and antenna. As an example, a third-order filtering antenna is synthesized, designed, and tested at 2.45 GHz, which numerically and experimentally validates the effectiveness of the derived equation.
Shoichi ONODERA Ryo ISHIKAWA Akira SAITOU Kazuhiko HONJO
A frequency-reconfigurable dipole antenna, whose dual resonant frequencies are independently controlled, is introduced. The antenna's conductor consists of radiating conductors, lumped and distributed elements, and varactors. To design the antenna, current distribution, input impedance, and radiation power including higher-order modes, are analyzed for a narrow-angle sectorial antenna embedded with passive elements. To derive the formulae used, radiation power is analyzed in two ways: using Chu's equivalent circuit and the multipole expansion method. Numerical estimations of electrically small antennas show that dual-band antennas are feasible. The dual resonant frequencies are controlled with the embedded series and shunt inductors. A dual-band antenna is fabricated, and measured input impedances agree well with the calculated data. With the configuration, an electrically small 2.5-/5-GHz dual-band reconfig-urable antenna is designed and fabricated, where the reactance values for the series and shunt inductors are controlled with varactors, each connected in series to the inductors. Varying the voltages applied to the varactors varies the measured upper and lower resonant frequencies between 2.6 and 2.9GHz and between 5.1 and 5.3GHz, where the other resonant frequency is kept almost identical. Measured radiation patterns on the H-plane are almost omni-directional for both bands.
Yi ZHANG Guoqiang ZHAO Houjun SUN Mang HE Qiang CHEN
Digital phase shifters are widely used to achieve space scanning in phased array antenna, and beam pointing accuracy depends on the bit number and resolution of the digital phase shifter. This paper proposes a novel phase feeding method to reduce the phase quantization error effects. A linear formula for the beam pointing deviation of a linear uniform array in condition of phase quantization error is derived, and the linear programming algorithm is introduced to achieve the minimum beam pointing deviation. Simulations are based on the pattern of the phased array, which gives each element a certain quantization phase error to find the beam pointing deviation. The novel method is then compared with previous methods. Examples show that a 32-element uniform linear array with 5-bit phase shifters using the proposed method can achieve a higher beam-steering accuracy than the same array with 11-bit phase shifters.
Jingjing WANG Lingwei XU Xinli DONG Xinjie WANG Wei SHI T. Aaron GULLIVER
In this paper, the average symbol error probability (SEP) performance of decode-and-forward (DF) relaying mobile-to-mobile (M2M) systems with transmit antenna selection (TAS) over N-Nakagami fading channels is investigated. The moment generating function (MGF) method is used to derive exact SEP expressions, and the analysis is verified via simulation. The optimal power allocation problem is investigated. Performance results are presented which show that the fading coefficient, number of cascaded components, relative geometrical gain, number of antennas, and power allocation parameter have a significant effect on the SEP.
Mingli CHU Qinghai YANG Kyung Sup KWAK
In this paper, we investigate a preference-aware multicast mechanism in active array aided LTE (Long Term Evolution) networks. An active antenna system can direct vertical beams in different horizontal and vertical directions, so the amount of energy delivered is more concentrated on the target users. The active array provides each multicast group with an individual beam with specific downtilt delivering shared video to all users in the group. For the multicast system, the objective of our proposed resource allocation scheme is to maximize the total throughput, subject to the constraints of power, subcarrier and antenna downtilt, as well as horizontal angles and the vertical half power bandwidth. To solve the problem, individual beams are steered for multicast groups. Furthermore, a novel subcarrier assignment scheme is proposed to enhance the spectrum resource utilization, and the optimal power allocation is obtained by virtue of Lagrangian method. Simulation results demonstrate the throughput and the spectral efficiency enhancement of our proposed scheme over other conditional schemes.
Fengwei LIU Hongzhi ZHAO Ying LIU Youxi TANG
In this paper, we propose a channel-unaware algorithm to suppress the narrowband interference (NBI) for the time synchronization, where multiple antennas are equipped at the receiver. Based on the fact that the characteristics of synchronization signal are different from those of NBI in both the time and spatial domain, the proposed algorithm suppresses the NBI by utilizing the multiple receive antennas in the eigen domain of NBI, where the eigen domain is obtained from the time domain statistical information of NBI. Because time synchronization involves incoherent detection, the proposed algorithm does not use the desired channel information, which is different from the eigen domain interference rejection combining (E-IRC). Simulation results show, compared with the traditional frequency domain NBI suppression technique, the proposed algorithm has about a 2 dB gain under the same probability of detection.
Distributed antenna systems (DASs) combined with multi-user multiple-input multiple-output (MU-MIMO) transmission techniques have recently attracted significant attention. To establish MU-MIMO DASs that have wide service areas, the use of a dynamic clustering scheme (CS) is necessary to reduce computation in precoding. In the present study, we propose a simple method for dynamic clustering to establish a single cell large-scale MU-MIMO DAS and investigate its performance. We also compare the characteristics of the proposal to those of other schemes such as exhaustive search, traditional location-based adaptive CS, and improved norm-based CS in terms of sum rate improvement. Additionally, to make our results more universal, we further introduce spatial correlation to the considered system. Computer simulation results indicate that the proposed CS for the considered system provides better performance than the existing schemes and can achieve a sum rate close to that of exhaustive search but at a lower computational cost.
Shoichiro YAMASAKI Tomoko K. MATSUSHIMA
Secret sharing is a method of information protection for security. The information is divided into n shares and reconstructed from any k shares, but no knowledge of the information is revealed from k-1 shares. Physical layer security is a method of achieving favorable reception conditions at the destination terminal in wireless communications. In this study, we propose a security enhancement technique for wireless packet communications. The technique uses secret sharing and physical layer security to exchange a secret encryption key. The encryption key for packet information is set as the secret information in secret sharing, and the secret information is divided into n shares. Each share is located in the packet header. The base station transmits the packets to the destination terminal by using physical layer security based on precoded multi-antenna transmission. With this transmission scheme, the destination terminal can receive more than k shares without error and perfectly recover the secret information. In addition, an eavesdropper terminal can receive less than k-1 shares without error and recover no secret information. In this paper, we propose a protection technique using secret sharing based on systematic Reed-Solomon codes. The technique establishes an advantageous condition for the destination terminal to recover the secret information. The evaluation results by numerical analysis and computer simulation show the validity of the proposed technique.
Patchaikani SINDHUJA Yoshihiko KUWAHARA Kiyotaka KUMAKI Yoshiyuki HIRAMATSU
In this paper, a vehicular antenna design scheme that considers vehicular body effects is proposed. A wire antenna for the global positioning system (GPS) and long-term evolution (LTE) systems is implemented on a plastic plate and then mounted on a windshield of the vehicle. Common outputs are used to allow feed sharing. It is necessary to increase the GPS right-hand circularly polarization (RHCP) gain near the zenith and to reduce the axis ratio (AR). For LTE, we need to increase the horizontal polarization (HP) gain. In addition, for LTE, multiband characteristics are required. In order to achieve the specified performance, the antenna shape is optimized via a Pareto genetic algorithm (PGA). When an antenna is mounted on the body, antenna performance changes significantly. To evaluate the performance of an antenna with complex shape mounted on a windshield, a commercial electromagnetic simulator (Ansoft HFSS) is used. To apply electromagnetic results output by HFSS to the PGA algorithm operating in the MATLAB environment, a MATLAB-to-HFSS linking program via Visual BASIC (VB) script was used. It is difficult to carry out the electromagnetic analysis on the entire body because of the limitations of the calculating load and memory size. To overcome these limitations, we consider only that part of the vehicle's body that influences antenna performance. We show that a series of optimization steps can minimize the degradation caused by the vehicle`s body. The simulation results clearly show that it is well optimized at 1.575GHz for GPS, and 0.74 ∼ 0.79GHz and 2.11 ∼ 2.16GHz for LTE, respectively.
Lei CHEN Ke ZHANG Yangbo HUANG Zhe LIU Gang OU
The rapid development of a global navigation satellite system (GNSS) has raised the demand for spacecraft navigation, particularly for lunar spacecraft (LS). First, instead of the traditional approach of combining the united X-band system (UXB) with very-long-baseline interferometry (VLBI) by a terrestrial-based observing station in Chinese deep-space exploration, the spacecraft navigation based on inter-satellite link (ISL) is proposed because the spatial coverage of the GNSS downstream signals is too narrow to be used for LS navigation. Second, the feasibility of LS navigation by using ISL wide beam signals has been analyzed with the following receiving parameters: the geometrical dilution of precision (GDOP) and the carrier-to-noise ratio (C/N0) for satellites autonomously navigation of ISL and LS respectively; the weighting distance root-mean-square (wdrms) for the combination of both navigation modes. Third, to be different from all existing spacecraft ISL and GNSS navigation methods, an ISL annular beam transmitting antenna has been simulated to minimize the wdrms (1.138m) to obtain the optimal beam coverage: 16°-47° on elevation angle. Theoretical calculations and simulations have demonstrated that both ISL autonomous navigation and LS navigation can be satisfied at the same time. Furthermore, an onboard annular wide beam ISL antenna with optimized parameters has been designed to provide a larger channel capacity with a simpler structure than that of the existing GPS ISL spot beam antenna, a better anti-jamming performance than that of the former GPS ISL UHF-band wide band antenna, and a wider effectively operating area than the traditional terrestrial-based measurement. Lastly, the possibility and availability of applying an ISL receiver with an annular wide beam antenna on the Chinese Chang'E-5T (CE-5T) reentry experiment for autonomous navigation are analyzed and verified by simulating and comparing the ISL receiver with the practiced GNSS receiver.