Minhwan CHOI Hoojin LEE Haewoon NAM
This letter presents a comprehensive analytical framework for average pairwise error probability (PEP) of decode-and-forward cooperative network based on various distributed space-time block codes (DSTBCs) with antenna switching (DDF-AS) technique over quasi-static Rayleigh fading channels. Utilizing the analytical framework, exact and asymptotic PEP expressions can be effectively formulated, which are based on the Lauricella multiplicative hypergeometric function, when various DSTBCs are adopted for the DDF-AS system. The derived asymptotic PEP formulas and some numerical results enable us to verify that the DDF-AS scheme outperforms the conventional cooperative schemes in terms of error rate performance. Furthermore, the asymptotic PEP formulas can also provide explicit and useful insights into the full diversity transmission achieved by the DDF-AS system.
Xingquan LI Chunlong HE Jihong ZHANG
In this paper, we investigate different power allocation optimization problems with interferences for distributed antenna systems (DAS) with and without D2D communication, respectively. The first objective problem is maximizing spectral efficiency (SE) of the DAS with D2D communication under the constraints of the minimum SE requirements of user equipment (UE) and D2D pair, maximum transmit power of each remote access unit (RAU) and maximum transmit power of D2D transmitter. We transform this non-convex objective function into a difference of convex functions (D.C.) then using the concave-convex procedure (CCCP) algorithm to solve the optimization problem. The second objective is maximizing energy efficiency (EE) of the DAS with D2D communication under the same constraints. We first exploit fractional programming theory to obtain the equivalent objective function of the second problem with subtract form, and then transform it into a D.C. problem and use CCCP algorithm to obtain the optimal power allocation. In each part, we summarize the corresponding optimal power allocation algorithms and also use similar method to obtain optimal solutions of the same optimization problems in DAS. Simulation results are provided to demonstrate the effectiveness of the designed power allocation algorithms and illustrate the SE and EE of the DAS by using D2D communication are much better than DAS without D2D communication.
Mohamed M. MANSOUR Haruichi KANAYA
This paper looks into the underlying RF energy harvesting issues at low input ambient power levels below 0 dBm where efficiency degradation is severe. The proposed design aims to improve the rectenna sensitivity, efficiency, and output DC power. In the same manner, we are using a straightforward and compact size rectenna design. The receiving antenna is a coplanar waveguide (CPW) slot monopole antenna with harmonic suppression property and a peak measured gain of 3 dBi. Also, an improved antenna radiation characteristics, e.g radiation pattern and gain covering the desired operating band (ISM 2.45 GHz), is observed. The rectifier is a voltage doubler circuit based on microstrip (MS) structure. Two architectures of rectenna were carefully designed, fabricated and tested. The first layout; antenna, and rectifier were fabricated separately and then connected using a connector. The peak efficiency (40% at -5 dBm) achieved is lower than expected. To improve the efficiency, a high compactness and simple integration between antenna and rectifier are achieved by using a smooth CPW-MS transition. This design shows improved conversion efficiency measurement results which typically agree with the simulation results. The measured peak conversion efficiency is 72% at RF power level of -7 dBm and a load resistance of 2 kΩ.
Akihito TAYA Takayuki NISHIO Masahiro MORIKURA Koji YAMAMOTO
Sharing perceptual data (e.g., camera and LiDAR data) with other vehicles enhances the traffic safety of autonomous vehicles because it helps vehicles locate other vehicles and pedestrians in their blind spots. Such safety applications require high throughput and short delay, which cannot be achieved by conventional microwave vehicular communication systems. Therefore, millimeter-wave (mmWave) communications are considered to be a key technology for sharing perceptual data because of their wide bandwidth. One of the challenges of data sharing in mmWave communications is broadcasting because narrow-beam directional antennas are used to obtain high gain. Because many vehicles should share their perceptual data to others within a short time frame in order to enlarge the areas that can be perceived based on shared perceptual data, an efficient scheduling for concurrent transmission that improves spatial reuse is required for perceptual data sharing. This paper proposes a data sharing algorithm that employs a graph-based concurrent transmission scheduling. The proposed algorithm realizes concurrent transmission to improve spatial reuse by designing a rule that is utilized to determine if the two pairs of transmitters and receivers interfere with each other by considering the radio propagation characteristics of narrow-beam antennas. A prioritization method that considers the geographical information in perceptual data is also designed to enlarge perceivable areas in situations where data sharing time is limited and not all data can be shared. Simulation results demonstrate that the proposed algorithm doubles the area of the cooperatively perceivable region compared with a conventional algorithm that does not consider mmWave communications because the proposed algorithm achieves high-throughput transmission by improving spatial reuse. The prioritization also enlarges the perceivable region by a maximum of 20%.
In this paper, we propose a periodic reactance time function for 2-element electronically steerable passive array radiator (ESPAR) antennas applicable to the receivers of both single-input multiple-output (SIMO) and multiple-input multiple-output (MIMO) systems with 2 outputs. Based on the proposed function, we evaluate the power patterns of the antenna for various distances between two antenna elements. Moreover, for the distances, we discuss the correlation properties and the strength of the two outputs to find the appropriate distance for the receiver. From the discussions, we can conclude that distances from 0.1 to 0.35 times the wavelength are effective in terms of receive diversity.
Suguru KOJIMA Takuji ARIMA Toru UNO
This paper proposes a low-profile unidirectional supergain antenna applicable to wireless communication devices such as mobile terminals, the Internet of Things and so on. The antennas used for such systems are required to be not only electrically low-profile but also unsusceptible to surrounding objects such as human body and/or electrical equipment. The proposed antenna achieves both requirements due to its supergain property using planar elements and a closely placed planar reflector. The primary antenna is an asymmetric dipole type, and consists of a monopole element mounted on an edge of a rectangular conducting plane. Both elements are placed on a dielectric substrate backed by the planar reflector. It is numerically and experimentally shown that the supergain property is achieved by optimizing the geometrical parameters of the antenna. It is also shown that the impedance characteristics can be successfully adjusted by changing the lengths of the ground plane element and the monopole element. Thus, no additional impedance matching circuit is necessary. Furthermore, it is shown that surrounding objects have insignificant impact on the antenna performance.
Takayoshi HIRASAWA Shigeyuki AKIBA Jiro HIROKAWA Makoto ANDO
This paper studies the performance of the quantitative RF power variation in Radio-over-Fiber beam forming system utilizing a phased array-antenna integrating photo-diodes in downlink network for next generation millimeter wave band radio access. Firstly, we described details of fabrication of an integrated photonic array-antenna (IPA), where a 60GHz patch antenna 4×2 array and high-speed photo-diodes were integrated into a substrate. We evaluated RF transmission efficiency as an IPA system for Radio-over-Fiber (RoF)-based mobile front hall architecture with remote antenna beam forming capability. We clarified the characteristics of discrete and integrated devices such as an intensity modulator (IM), an optical fiber and the IPA and calculated RF power radiated from the IPA taking account of the measured data of the devices. Based on the experimental results on RF tone signal transmission by utilizing the IPA, attainable transmission distance of wireless communication by improvement and optimization of the used devices was discussed. We deduced that the antenna could output sufficient power when we consider that the cell size of the future mobile communication systems would be around 100 meters or smaller.
Aye Mon HTUN Maung SANN MAW Iwao SASASE
Multiuser massive multi-input multi-output (MU massive MIMO) is considered as a promising technology for the fifth generation (5G) of the wireless communication system. In this paper, we propose a low-complexity joint antenna and user selection scheme with block diagonalization (BD) precoding for MU massive MIMO downlink channel in the time division duplex (TDD) system. The base station (BS) is equipped with a large-scale transmit antenna array while each user is using the single receive antenna in the system. To reduce the hardware cost, BS will be implemented by limited number of radio frequency (RF) chains and BS must activate some selected transmit antennas in the BS side for data transmitting and some users' receive antennas in user side for data receiving. To achieve the reduction in the computation complexity in the antenna and user selection while maintaining the same or higher sum-rate in the system, the proposed scheme relies on three complexity reduction key factors. The first key factor is that finding the average channel gains for the transmit antenna in the BS side and the receive antenna in the user side to select the best channel gain antennas and users. The second key factor called the complexity control factor ξ(Xi) for the antenna set and the user set limitation is used to control the complexity of the brute force search. The third one is that using the assumption of the point-to-point deterministic MIMO channel model to avoid the singular value decomposition (SVD) computation in the brute force search. We show that the proposed scheme offers enormous reduction in the computation complexity while ensuring the acceptable performance in terms of total system sum-rate compared with optimal and other conventional schemes.
Haruya ISHIKAWA Yukitoshi SANADA
This paper evaluates the throughput of a distributed antenna network (DAN) with multiple mobile terminal scheduling and the usage of joint maximum-likelihood detection (MLD). Mobile terminals are closer to the desired antennas in the DAN which leads to higher throughput and better frequency utilization efficiency. However, when multiple mobile terminal scheduling is applied to the DAN, interference can occur between transmitted signals from antennas. Therefore, in this research, mobile terminal scheduling along with joint MLD is applied to reduce the effects of interference. A system level simulation shows that the usage of joint MLD in a densely packed DAN provides better system throughput regardless of the numbers of mobile terminals and fading channels.
Marco FAENZI Gabriele MINATTI Stefano MACI
This paper gives an overview on the design process of modulated metasurface (MTS) antennas and focus on their performance in terms of efficiency and bandwidth. The basic concept behind MTS antennas is that the MTS imposes the impedance boundary conditions (IBCs) seen by a surface wave (SW) propagating on it. The MTS having a spatially modulated equivalent impedance transforms the SW into a leaky wave with controlled amplitude, phase and polarization. MTS antennas are hence highly customizable in terms of performances by simply changing the IBCs imposed by the MTS, without affecting the overall structure. The MTS can be configured for high gain (high aperture efficiency) with moderate bandwidth, for wide bandwidth with moderate aperture efficiency, or for a trade-off performance for bandwidth and aperture efficiency. The design process herein described relies on a generalized form of the Floquet wave theorem adiabatically applied to curvilinear locally periodic IBCs. Several technological solutions can be adopted to implement the IBCs defined by the synthesis process, from sub-wavelength patches printed on a grounded slab at microwave frequencies, to a bed of nails structure for millimeter waves: in any case, the resulting device has light weight and a low profile.
Takatsugu FUKUSHIMA Naobumi MICHISHITA Hisashi MORISHITA Naoya FUJIMOTO
Two kinds of composite right/left-handed coaxial lines (CRLH CLs) are designed for an antenna element. The dispersion relations of the infinite periodic CRLH CLs are designed to occur -1st resonance at around 700 MHz, respectively. The designed CRLH CLs comprise a monopole and a choke structure for antenna elements. To verify the resonant modes and frequencies, the monopole structure, the choke structure, and the antenna element which is combined the monopole and the choke structures are simulated by eigenmode analysis. The resonant frequencies correspond to the dispersion relations. The monopole and the choke structures are applied to the coaxially fed antenna. The proposed antenna matches at 710 MHz and radiates. At the resonant frequency, the total length of the proposed antenna which is the length of the monopole structure plus the choke structure is 0.12 wavelength. The characteristics of the proposed antenna has been compared with that of the conventional coaxially fed monopole antenna without the choke structure and the sleeve antenna with the quarter-wavelength choke structure. The radiation pattern of the proposed antenna is omnidirectional, the total antenna efficiency is 0.73 at resonant frequencies, and leakage current is suppressed lesser than -10 dB at resonant frequency. The propose antenna is fabricated and measured. The measured |S11| characteristics, radiation patterns, and the total antenna efficiency are in good agreement with the simulated results.
Takafumi FUJIMOTO Keigo SHIMIZU
In this paper, a printed inverted-F antenna for radiating circularly polarized wave around its resonant frequency is proposed. To get good axial ratio at the frequency band with 10dB-return loss, a rectangular element is loaded at the feeding line perpendicularly. The axial ratio and the frequency giving the minimum axial ratio can be adjusted by the ratio of the length to the width of the whole antenna and by the dimension of the loaded rectangular element. The operational principle for circular polarization is explained using the electric current distributions. Moreover, the approach of the enhancement for the bandwidth is discussed. The simulated and measured bandwidths of the 10dB-return loss with a 3dB-axial ratio are 2.375GHz-2.591GHz (216MHz) and 2.350-2.534GHz (184MHz), respectively. The proposed antenna's dimension is 0.067λ2c (λc is the wavelength at the center frequency). The proposed antenna is compact and planar, and is therefore useful for circular polarization in the ISM band.
Takashi TOMURA Haruhisa HIRAYAMA Jiro HIROKAWA
A PCB-integratable metal cap slot antenna is developed for the 60-GHz band. The antenna is composed of two slots and a T-junction and is fed by a post-wall waveguide on a substrate. The dimensions of the designed antenna are 8.0×4.5×2.5mm3. The designed antenna is insensitive with a metal block behind the antenna. The designed antenna is fabricated by machining a brass block and evaluated by measurement. The measurement shows reflection less than -10.0dB, gain larger than 7.8dBi and beamwidth between 54°-65° over the 60-GHz band with endfire radiation. The antenna showed high gain together with short length of half wavelength in the radiation direction. This antenna also can be integrated with printed circuit board (PCB) and is suitable for mobile terminals such as smart phones and tablets.
Fengde JIA Zishu HE Yikai WANG Ruiyang LI
In this paper, we propose an online antenna-pulse selection method in space time adaptive processing, while maintaining considerable performance and low computational complexity. The proposed method considers the antenna-pulse selection and covariance matrix estimation at the same time by exploiting the structured clutter covariance matrix. Such prior knowledge can enhance the covariance matrix estimation accuracy and thus can provide a better objective function for antenna-pulse selection. Simulations also validate the effectiveness of the proposed method.
Chi-Yuk CHIU Shanpu SHEN Fan JIANG Katsunori ISHIMIYA Qingsha S. CHENG Ross D. MURCH
Smartphones for wireless communication typically consist of a large area frontal liquid crystal display (LCD), which incorporates a metal back plate, and a back cover chassis made from metal. Leveraging this structure a new approach to construct antennas for smartphones is proposed where the complete metal back cover chassis and LCD back plate are used as the radiating element and ground plane. In the design a feedline is connected between the metal back cover chassis and LCD back plate, along with shorts at various locations between the two metal plates, to control the resonance frequency of the resulting antenna. Multiple-band operation is possible without the need for any slots in the plates for radiation. Results show that antenna frequency reconfigurability can be achieved when switching function is added to the shorts so that several wireless communication bands can be covered. This approach is different from existing metallic frame antenna designs currently available in the market. A design example is provided which uses one PIN diode for the switching shorts and the target frequency bands are 740-780MHz and 900-1000MHz & 1700-1900MHz. The optimization of LC matchings and concerns of hand effects and metallic components between the chassis and LCD metal back plate are also addressed.
Hidenori YUKAWA Yu USHIJIMA Motomi ABE Takeshi OSHIMA Naofumi YONEDA Moriyasu MIYAZAKI
We propose a T-junction OMT consisting of an offset stepped post. The offset stepped post contributes to the matching of two rectangular ports at the short circuit, situated at the opposite side walls. The structure without conventional ridges is simple and makes it possible to achieve robust performance. We fabricated a proposed T-junction OMT in a single piece of an aluminum alloy, using a commercial metal 3D-printer. The simple and compact structure with robust performance is proposed to overcome the disadvantages of a 3D-printer, such as fabrication tolerance and surface roughness. The measured results demonstrated a return loss of 22dB and an insertion loss of 0.3dB, with a bandwidth of 8% in the K-band.
Takashi MARUYAMA Shigeo UDAGAWA
We propose waveguide to microstrip line transitions for automotive millimeter wave radar modules. The transitions perpendicularly connect one waveguide and one or two microstrip lines. The configuration is simple because it consists of a waveguide and a dielectric substrate with copper foils. Additionally the transitions do not need via holes on the substrate. It leads to lower costs and improved reliability. We have already proposed a via-less transition by using multi-stage impedance transformers. The impedance transformers are used for suppressing undesirable radiation from the transition as well as impedance matching. In this paper, we propose a new transition with the microstrip lines on the long axis of the waveguide while most transitions place the microstrip lines on the minor axis (electric field direction) of the waveguide. Though our transition uses bend structures of microstrip lines, which basically cause radiation, our optimized configuration can keep small radiation. We also design a transition with a single microstrip line. The proposed transition with 2 microstrip lines can be modified to the 1 microstrip line version with minimum radiation loss. Electromagnetic simulations confirm the small radiation levels expected. Additionally we fabricate the transitions with back to back structure and determine the transmission and radiation performance. We also fabricates the transition for a patch array antenna. We confirm that the undesirable radiation from the proposed transition is small and the radiation pattern of the array antenna is not worsen by the transition.
This paper proposes the absorber integrated planar array antenna for a 120-GHz-band close proximity wireless system. It consists of split-ring resonators (SRRs) patterned on a quartz substrate and a plate-laminated-waveguide planar slot array antenna. Precise alignment and multiple reflection between Tx-Rx antenna become severe problem as the carrier frequency increases, such as >100GHz. The absorber integrated planar slot array antenna solves these problems. We designed a SRR unit cell that acts as a millimeter-wave (MMW) absorber, and the simulated S11 of the SRR absorber at 125GHz is -37dB. The use of the SRR absorber on the planar slot antenna suppresses the multiple reflection between Tx and Rx antennas, however the transmission loss between Tx and Rx antennas increases. We changed the conductivity and cell size of 2×3 element SRR unit cells directly above the waveguide slots in order to make them act as an SRR director, and the use of the SRR director improved the transmission loss by 2.7dB. We simulated the transmission characteristics of a close-proximity wireless system using the SRR absorber integrated planar slot antennas. The simulated fluctuation of S21 in the 120-130GHz band is below 2.6dB, and the delayed waves that come from the multiple reflection between Tx and Rx antennas were suppressed.
Fumio SATO Michio YOKOYAMA Yudai USAMI Kentaro YAZAWA Takao KUKI Shizuo TOKITO
The authors have proposed a new type of flexible and printable 12GHz-band phase shifter using polymer actuator for the first time. Polymer bending actuator was used as a termination device of a reflection-type 3-dB, 90° hybrid coupler as the phase-shift control unit which controls the electrical length of the waveguide for microwave signals by the applied bias voltage. The microstrip line circuit of the device has been fabricated using low-cost screen printing method. Polymer bending actuator having three-layer stacking structure, in which an ionic liquid electrolyte layer is sandwiched with two conductive network composite layers, was formed by wet processes. The authors have confirmed that the phase shift could be controlled in analog by low driving voltages of 2-7 V for the actuator with a insertion loss of 2.73 dB. This phase shifter can be integrated with flexible patch antenna and the current flexible polymer electronics devices such as transistors.
This paper presents a meta-structured circular polarized array antenna with wide scan angle. In order to widen the scanning angle of array antennas, this paper investigates unit antenna beamwidth and the coupling effects between array elements, both of which directly affect the steering performance. As a result, the optimal array distance, the mode configuration, and the antenna structure are elucidated. By using the features of the miniaturized mu-zero resonance (MZR) antenna, it is possible to design the antenna at optimum array distance for wide beamwidth. In addition, by modifying via position and gap configuration of the antenna, it is possible to optimize the mode configuration for optimal isolation. Finally, the 3dB steerable angle of 66° is successfully demonstrated using a 1x8 MZR CP antenna array without any additional decoupling structure. The measured beam patterns at a scan angle of 0°, 22°, 44°, and 66°agree well with the simulated beam patterns.