The search functionality is under construction.

Keyword Search Result

[Keyword] automotive(33hit)

1-20hit(33hit)

  • SOME/IP Intrusion Detection System Using Machine Learning

    Jaewoong HEO  Hyunghoon KIM  Hyo Jin JO  

     
    LETTER

      Pubricized:
    2022/07/13
      Vol:
    E105-D No:11
      Page(s):
    1923-1924

    With the development of in-vehicle network technologies, Automotive Ethernet is being applied to modern vehicles. Scalable service-Oriented MiddlewarE over IP (SOME/IP) is an automotive middleware solution that is used for communications of the infotainment domain as well as that of other domains in the vehicle. However, since SOME/IP lacks security, it is vulnerable to a variety of network-based attacks. In this paper, we introduce a new type of intrusion detection system (IDS) leveraging on SOME/IP packet's header information and packet reception time to deal with SOME/IP related network attacks.

  • A Tutorial and Review of Automobile Direct ToF LiDAR SoCs: Evolution of Next-Generation LiDARs Open Access

    Kentaro YOSHIOKA  

     
    INVITED PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    534-543

    LiDAR is a distance sensor that plays a key role in the realization of advanced driver assistance systems (ADAS). In this paper, we present a tutorial and review of automotive direct time of flight (dToF) LiDAR from the aspect of circuit systems. We discuss the breakthrough in ADAS LiDARs through comparison with the first-generation LiDAR systems, which were conventionally high-cost and had an immature performance. We define current high-performance and low-cost LiDARs as next-generation LiDAR systems, which have significantly improved the cost and performance by integrating the photodetector, the readout circuit, and the signal processing unit into a single SoC. This paper targets reader who is new to ADAS LiDARs and will cover the basic principles of LiDAR, also comparing with range methods other than dToF. In addition, we discuss the development of this area through the latest research examples such as the 2-chip approach, 2D SPAD array, and 3D integrated LiDARs.

  • Generation of Surface Wave in C-Band Automotive On-Glass Antenna and an Easily Realizable Suppression Method for Improving Antenna Characteristics

    Osamu KAGAYA  Keisuke ARAI  Takato WATANABE  Takuji ARIMA  Toru UNO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/08/02
      Vol:
    E105-B No:1
      Page(s):
    51-57

    In this paper, the influence of surface waves on the characteristics of on-glass antennas is clarified to enable appropriates design of C-band automotive on-glass antennas. Composite glasses are used in automotive windshields. These automotive composite glasses are composed of three layers. First, the surface wave properties of composite glass are investigated. Next, the effects of surface waves on the reflection coefficient characteristics of on-glass antennas are investigated. Finally, the antenna placement to reduce surface wave effect will be presented. Electromagnetic field analysis of a dipole antenna placed at the center of a 300mm × 300mm square flat composite glass showed that the electric field strength in the glass had ripples with the half wavelength period of the surface waves. Therefore, it was confirmed that standing waves are generated because of these surface waves. In addition, it is confirmed that ripples occur in the reflection coefficient at frequencies. Glass size is divisible by each of those guide wavelengths. Furthermore, it was clarified that the reflection coefficient fluctuates with respect to the distance between the antenna and a metal frame, which is attached to the end face in the direction perpendicular to the thickness of the glass because of the influence of standing waves caused by the surface waves; additionally, the reflection coefficient gets worse when the distance between the antenna and the metal frame is an integral multiple of one half wavelength. A similar tendency was observed in an electric field analysis using a model that was shaped like the actual windshield shape. Because radiation patterns also change as a result of the influence of surface waves and metal frames, the results imply that it is necessary to consider the actual device size and the metal frames when designing automotive on-glass antennas.

  • A High-Speed PWM-Modulated Transceiver Network for Closed-Loop Channel Topology

    Kyongsu LEE  Jae-Yoon SIM  

     
    BRIEF PAPER

      Pubricized:
    2020/12/18
      Vol:
    E104-C No:7
      Page(s):
    350-354

    This paper proposes a pulse-width modulated (PWM) signaling[1] to send clock and data over a pair of channels for in-vehicle network where a closed chain of point-to-point (P2P) interconnection between electronic control units (ECU) has been established. To improve detection speed and margin of proposed receiver, we also proposed a novel clock and data recovery (CDR) scheme with 0.5 unit-interval (UI) tuning range and a PWM generator utilizing 10 equally-spaced phases. The feasibility of proposed system has been proved by successfully detecting 1.25 Gb/s data delivered via 3 ECUs and inter-channels in 180 nm CMOS technology. Compared to previous study, the proposed system achieved better efficiency in terms of power, cost, and reliability.

  • Model Checking of Automotive Control Software: An Industrial Approach

    Masahiro MATSUBARA  Tatsuhiro TSUCHIYA  

     
    PAPER-Formal Approaches

      Pubricized:
    2020/03/30
      Vol:
    E103-D No:8
      Page(s):
    1794-1805

    In automotive control systems, the potential risks of software defects have been increasing due to growing software complexity driven by advances in electric-electronic control. Some kind of defects such as race conditions can rarely be detected by testing or simulations because these defects manifest themselves only in some rare executions. Model checking, which employs an exhaustive state-space exploration, is effective for detecting such defects. This paper reports our approach to applying model checking techniques to real-world automotive control programs. It is impossible to directly model check such programs because of their large size and high complexity; thus, it is necessary to derive, from the program under verification, a model that is amenable to model checking. Our approach uses the SPIN model checker as well as in-house tools that facilitate this process. One of the key features implemented in these tools is boundary-adjustable program slicing, which allows the user to specify and extract part of the source code that is relevant to the verification problem of interest. The conversion from extracted code into Promela, SPIN's input language, is performed using one of the tools in a semi-automatic manner. This approach has been used for several years in practice and found to be useful even when the code size of the software exceeds 400 KLOC.

  • A 2.5Gbps Transceiver and Channel Architecture for High-Speed Automotive Communication System

    Kyongsu LEE  Jae-Yoon SIM  

     
    BRIEF PAPER-Integrated Electronics

      Vol:
    E102-C No:10
      Page(s):
    766-769

    In this paper, a new transceiver system for the in-vehicle communication system is proposed to enhance data transmission rate and timing accuracy in TDM-based application. The proposed system utilizes point-to-point (P2P) channel, a closed-loop clock forwarding path, and a transceiver with a repeater and clock delay adjuster. The proposed system with 4 ECU (Electronic Computing Unit) nodes is implemented in 180nm CMOS technology and, when compared with conventional bus-based system, achieved more than 125 times faster data transmission. The maximum data rate was 2.5Gbps at 1.8V power supply and the worst peak-to-peak jitter for the data and clock signals over 5000 data symbols were about 49.6ps and 9.8ps respectively.

  • Mutual Interference Suppression and Signal Restoration in Automotive FMCW Radar Systems

    Sohee LIM  Seongwook LEE  Jung-Hwan CHOI  Jungmin YOON  Seong-Cheol KIM  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2018/12/11
      Vol:
    E102-B No:6
      Page(s):
    1198-1208

    This paper presents an interference suppression and signal restoration technique that can create the clean signals required by automotive frequency-modulated continuous wave radar systems. When a radar signal from another radar system interferes with own transmitted radar signal, the target detection performance is degraded. This is because the beat frequency corresponding to the target cannot be estimated owing to the increase in the noise floor. In this case, advanced weighted-envelope normalization or wavelet denoising can be used to mitigate the effect of the interference; however, these methods can also lead to the loss of the desired signal containing the range and velocity information of the target. Therefore, we propose a method based on an autoregressive model to restore a signal damaged by mutual interference. The method uses signals that are not influenced by the interference to restore the signal. In experiments conducted using two different automotive radar systems, our proposed method is demonstrated to effectively suppress the interference and restore the desired signal. As a result, the noise floor resulting from the mutual interference was lowered and the beat frequency corresponding to the desired target was accurately estimated.

  • Design and Experiment of Via-Less and Small-Radiation Waveguide to Microstrip Line Transitions for Millimeter Wave Radar Modules

    Takashi MARUYAMA  Shigeo UDAGAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/06/04
      Vol:
    E101-B No:12
      Page(s):
    2425-2434

    We propose waveguide to microstrip line transitions for automotive millimeter wave radar modules. The transitions perpendicularly connect one waveguide and one or two microstrip lines. The configuration is simple because it consists of a waveguide and a dielectric substrate with copper foils. Additionally the transitions do not need via holes on the substrate. It leads to lower costs and improved reliability. We have already proposed a via-less transition by using multi-stage impedance transformers. The impedance transformers are used for suppressing undesirable radiation from the transition as well as impedance matching. In this paper, we propose a new transition with the microstrip lines on the long axis of the waveguide while most transitions place the microstrip lines on the minor axis (electric field direction) of the waveguide. Though our transition uses bend structures of microstrip lines, which basically cause radiation, our optimized configuration can keep small radiation. We also design a transition with a single microstrip line. The proposed transition with 2 microstrip lines can be modified to the 1 microstrip line version with minimum radiation loss. Electromagnetic simulations confirm the small radiation levels expected. Additionally we fabricate the transitions with back to back structure and determine the transmission and radiation performance. We also fabricates the transition for a patch array antenna. We confirm that the undesirable radiation from the proposed transition is small and the radiation pattern of the array antenna is not worsen by the transition.

  • An Overview of Cyber Security for Connected Vehicles Open Access

    Junko TAKAHASHI  

     
    INVITED PAPER

      Pubricized:
    2018/08/22
      Vol:
    E101-D No:11
      Page(s):
    2561-2575

    The demand for and the scope of connected services have rapidly grown and developed in many industries such as electronic appliances, robotics, and industry automation. In the automotive field, including connected vehicles, different types of connected services have become available and they provide convenience and comfort with users while yielding new business opportunities. With the advent of connected vehicles, the threat of cyber attacks has become a serious issue and protection methods against these attacks are urgently needed to provide safe and secure connected services. From 2017, attack methods have become more sophisticated through different attack surfaces attached to navigation systems and telematics modules, and security requirements to circumvent such attacks have begun to be established. Individual threats have been addressed previously; however, there are few reports that provide an overview of cyber security related to connected vehicles. This paper gives our perspective on cyber security for connected vehicles based on a survey of recent studies related to vehicle security. To introduce these studies, the environment surrounding connected vehicles is classified into three categories: inside the vehicle, communications between the back-end systems and vehicles, and the back-end systems. In each category, this paper introduces recent trends in cyber attacks and the protection requirements that should be developed for connected services. We show that the overall security covering the three categories must be considered because the security of the vehicle is jeopardized even if one item in the categories is not covered. We believe that this paper will further contribute to development of all service systems related to connected vehicles including autonomous vehicles and to the investigation into cyber security against these attacks.

  • Improving DOA Estimation and Preventing Target Split Using Automotive Radar Sensor Arrays

    Heemang SONG  Seunghoon CHO  Kyung-Jin YOU  Hyun-Chool SHIN  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:3
      Page(s):
    590-594

    In this paper, we propose an automotive radar sensor compensation method improving direction of arrival (DOA) and preventing target split tracking. Amplitude and phase mismatching and mutual coupling between radar sensor arrays cause an inaccuracy problem in DOA estimation. By quantifying amplitude and phase distortion levels for each angle, we compensate the sensor distortion. Applying the proposed method to Bartlett, Capon and multiple signal classification (MUSIC) algorithms, we experimentally demonstrate the performance improvement using both experimental data from the chamber and real data obtained in actual road.

  • Enhanced Performance of MUSIC Algorithm Using Spatial Interpolation in Automotive FMCW Radar Systems

    Seongwook LEE  Young-Jun YOON  Seokhyun KANG  Jae-Eun LEE  Seong-Cheol KIM  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/06/28
      Vol:
    E101-B No:1
      Page(s):
    163-175

    In this paper, we propose a received signal interpolation method for enhancing the performance of multiple signal classification (MUSIC) algorithm. In general, the performance of the conventional MUSIC algorithm is very sensitive to signal-to-noise ratio (SNR) of the received signal. When array elements receive the signals with nonuniform SNR values, the resolution performance is degraded compared to elements receiving the signals with uniform SNR values. Hence, we propose a signal calibration technique for improving the resolution of the algorithm. First, based on original signals, rough direction of arrival (DOA) estimation is conducted. In this stage, using frequency-domain received signals, SNR values of each antenna element in the array are estimated. Then, a deteriorated element that has a relatively lower SNR value than those of the other elements is selected by our proposed scheme. Next, the received signal of the selected element is spatially interpolated based on the signals received from the neighboring elements and the DOA information extracted from the rough estimation. Finally, fine DOA estimation is performed again with the calibrated signal. Simulation results show that the angular resolution of the proposed method is better than that of the conventional MUSIC algorithm. Also, we apply the proposed scheme to actual data measured in the testing ground, and it gives us more enhanced DOA estimation result.

  • A 197mW 70ms-Latency Full-HD 12-Channel Video-Processing SoC in 16nm CMOS for In-Vehicle Information Systems

    Seiji MOCHIZUKI  Katsushige MATSUBARA  Keisuke MATSUMOTO  Chi Lan Phuong NGUYEN  Tetsuya SHIBAYAMA  Kenichi IWATA  Katsuya MIZUMOTO  Takahiro IRITA  Hirotaka HARA  Toshihiro HATTORI  

     
    PAPER

      Vol:
    E100-A No:12
      Page(s):
    2878-2887

    A 197mW 70ms-latency Full-HD 12-channel video-processing SoC for in-vehicle information systems has been implemented in 16nm CMOS. The SoC integrates 17 video processors of 6 types to operate video processing independently of other processing in CPU/GPU. The synchronous scheme between the video processors achieves 70ms low-latency for driver assistance. The optimized implementation of lossy and lossless video-data compression reduces memory access data by half and power consumption by 20%.

  • Clutter Suppression Method of Iron Tunnel Using Cepstral Analysis for Automotive Radars

    Han-Byul LEE  Jae-Eun LEE  Hae-Seung LIM  Seong-Hee JEONG  Seong-Cheol KIM  

     
    PAPER-Sensing

      Pubricized:
    2016/08/17
      Vol:
    E100-B No:2
      Page(s):
    400-406

    In this paper, we propose an efficient clutter suppression algorithm for automotive radar systems in iron-tunnel environments. In general, the clutters in iron tunnels makes it highly likely that automotive radar systems will fail to detect targets. In order to overcome this drawback, we first analyze the cepstral characteristic of the iron tunnel clutter to determine the periodic properties of the clutters in the frequency domain. Based on this observation, we suggest for removing the periodic components induced by the clutters in iron tunnels in the cepstral domain by using the cepstrum editing process. To verify the clutter suppression of the proposed method experimentally, we performed measurements by using 77GHz frequency modulated continuous waveform radar sensors for an adaptive cruise control (ACC) system. Experimental results show that the proposed method is effective to suppress the clutters in iron-tunnel environments in the sense that it improves the early target detection performance for ACC significantly.

  • RCS Measurements for Vehicles and Pedestrian at 26 and 79GHz

    Isamu MATSUNAMI  Ryohei NAKAMURA  Akihiro KAJIWARA  

     
    LETTER

      Vol:
    E99-A No:1
      Page(s):
    204-206

    The RCS of a radar target is an important factor related with the radar performance such as detection, tracking and classification. When dealing with the design of 26/79GHz automotive surveillance radar system, it is essential to know individual RCS of typical vehicles and pedestrian. However, there are few papers related to the RCS measurement at 26 and 79GHz. In this letter, the RCS measurements of typical vehicles and pedestrian were performed in a large-scale anechoic chamber room and the characteristics are discussed.

  • Novel Vehicle Information Acquisition Method Using 2D Reflector Code for Automotive Infrared Laser Radar

    Tomotaka WADA  Yusuke SHIKIJI  Keita WATARI  Hiromi OKADA  

     
    PAPER

      Vol:
    E98-A No:1
      Page(s):
    294-303

    In recent years, there are many collision accidents between vehicles due to human errors. As one of countermeasures against the collision accidents, automotive radar systems have been supporting vehicle drivers. By the automotive radar mounted on the vehicle, it is possible to recognize the situation around the vehicle. The ranging with automotive infrared laser radar is very accurate, and able to understand the object existence in the observation around the vehicle. However, in order to grasp the situation around the vehicle, it is necessary to be aware of the attribute of the detected object. The information obtained by the automotive radar vehicle is only the direction and the distance of the object. Thus, the recognition of the attribute of the detected object is very difficult. In this paper, we propose a novel vehicle information acquisition method by using 2D reflector code. Through experiments, we show that the proposed method is able to detect 2D reflector code and is effective for vehicle information acquisition.

  • A CFAR Circuit with Multiple Detection Cells for Automotive UWB Radars

    Satoshi TAKAHASHI  

     
    PAPER-Sensing

      Vol:
    E93-B No:6
      Page(s):
    1574-1582

    Future high-resolution short-range automotive radar will have a higher false alarm probability than the conventional low-resolution radar has. In a high-resolution radar, the reception signal becomes sensitive to the difference between intended and unintended objects. However, automotive radars must distinguish targets from background objects that are the same order of size; it leads to an increase in the false alarm probability. In this paper, a CFAR circuit for obtaining the target mean power, as well as the background mean power, is proposed to reduce the false alarm probability for high-resolution radars working in automotive environments. The proposed method is analytically evaluated with use of the characteristic function method. Spatial correlation is also considered in the evaluation, because the sizes of the both target and background objects approach the dimension of several range cells. Result showed the proposed CFAR with use of two alongside range cells could reduce the ratio of 6.4 dB for an example of an automotive situation.

  • Composite Patch Array Antenna with Built-In Polarizer and Its Road Clutter Reduction Effect for 76 GHz Automotive Radars

    Hiroshi SHINODA  Hiroshi KONDOH  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E92-C No:11
      Page(s):
    1401-1405

    A composite patch array antenna with built-in polarizer has been developed to reduce road clutter noise by 20 dB for 76 GHz automotive radars. A polarizer is placed in front of Tx and Rx patch arrays within their reactive near-field region to suppress cross-polarized sidelobe radiation from their feeding lines while maintaining a low-profile characteristic with 4 mm thickness. Additional metal-lined absorbers within the composite antenna structure, while terminating cross-polarized waves undesirably excited by the patch arrays, also serve as miniature clutter plates to further reduce sidelobes toward the road surface. The resultant composite antenna achieved sidelobe levels of -45 dB, a 20 dB improvement over standard patch arrays, at elevation angles close to 90.

  • Counter-Measures for Relay Failures due to Dynamic Welding: A Robust Engineering Design

    Thomas J. SCHOEPF  

     
    PAPER-Electromechanical Devices and Components

      Vol:
    E92-C No:5
      Page(s):
    728-735

    In prior work, contact welding phenomena were observed in automotive relays during break of motor inrush current. The switching performance of the type of relay investigated could be correlated with the parameters: over-travel, coil suppression, and the break current. In the present work the author further explores the impact of both the contact material (silver tin oxide versus fine grain silver) and the contact surface topography (brand new and pre-aged contacts). He further assesses the robustness of the system "relay" with those parameters using the Taguchi methods for robust design. Furthermore, the robustness of two alternative automotive relay types will be discussed.

  • Pre-Conditioning Automotive Relay Contacts to Increase Their Resistance to Dynamic Welding

    Thomas J. SCHOEPF  Abdellah BOUDINA  Robert D. ROWLANDS  Brent T. REPP  

     
    PAPER-Relays & Switches

      Vol:
    E90-C No:7
      Page(s):
    1441-1447

    Electromechanical switching devices such as relays may be surprisingly forgiving to occasional, but temporary, electrical stress beyond specification. Consequently delayed openings due to welded contacts on the order of milliseconds usually have been unnoticed and hence have not been reason for concern. However, as electrical systems of vehicles are getting "smarter" and more and more diagnostic routines are being implemented, even such short delay times may be translated as errors. Pre-conditioning contact surfaces has been explored as a measure to increase the welding resistance and eliminate contact opening delays. The 20-A-class relay investigated has been optimized to break occasional current peaks up to 80 ADC.

  • 77-GHz MMIC Module Design Techniques for Automotive Radar Applications

    Yasushi ITOH  Kazuhiko HONJO  

     
    REVIEW PAPER

      Vol:
    E88-C No:10
      Page(s):
    1939-1946

    Recent advances in 77-GHz MMIC module design techniques for automotive radar applications are reviewed in this paper. The target of R&D activities is moving from high performance to low cost, mass production, high-yield manufacturing and testing. To meet the stringent requirements, millimeter-wave module design techniques have made significant progress especially in packaging, bonding, and making interface with other modules. In addition, millimeter-wave semiconductor devices and MMICs have made remarkable improvements for low cost and mass production. In this paper, the topics focusing on millimeter-wave semiconductor devices and 77-GHz MMICs are reviewed first. Then the recent R&D results on 77-GHz MMIC module design techniques are introduced, showing the technical trend of packaging, bonding, and making interface with other modules for millimeter-wave, highly-integrated, low-cost MMIC modules. Finally, the existing and future module design issues for automotive radar applications are discussed.

1-20hit(33hit)