Takaya MIYAZAWA Kentaro ISHIZU Hitoshi ASAEDA Hiroyuki TSUJI Hiroaki HARAI
Recently, the open radio access network (O-RAN) architecture has been expected to enhance both the openness of network components and the intelligence of control functions as a promising RAN architecture for Beyond 5G (B5G)/6G networks. Meanwhile, the power consumption of base stations (BSs) in RAN is a serious problem that needs to be addressed owing to the recent increase in service types such as 4G-LTE, 5G, and local 5G, and it will be more remarkable in the future B5G era. However, a conventional RAN experiences energy wastage because it turns on the power of all BSs at all times, even in coverage areas that accommodate a small number of mobile terminals and low traffic. The O-RAN Alliance discusses the energy savings of BSs, but its standard specification lacks sufficient discussions on concrete models and protocols to realize highly energy-efficient power-on/off management of BSs. On the other hand, terrestrial network (TN) and non-terrestrial network (NTN) convergence has recently been considered in both academic research and standardization as an emerging technology for B5G networks. However, utilizing NTN capacities for BS power-on/off control of TN in the standard O-RAN architecture remains uninvestigated, although it has the potential to achieve higher energy efficiency. This study proposes a novel energy-efficient power management architecture for O-RAN BSs. The proposed power management architecture extends the traditional standard O-RAN architecture such that the pedestrian flow analytics results and NTN capacities can be effectively utilized to obtain a higher energy-saving effect for O-RAN BSs. Consequently, the proposed power-on/off control reduces the power consumption of O-RAN BSs while maintaining the continuity of communications, bitrate, and other metrics. We performed numerical calculations using real datasets of pedestrian flows in regional mesh areas. As a result, we proved that the proposed architecture reduces power consumption by up to 40% when the NTN can accommodate UEs’ traffic of approximately 400 Mbps. In addition, we implemented pedestrian flow analytics and power control functions in the controllers. We verified the feasibility of the functions by demonstrating the power-on/-off of an O-RAN BS using a mobile network testbed.
Daisuke ISHII Takanori HARA Kenichi HIGUCHI
In this paper, we investigate a method for clustering user equipment (UE)-specific transmission access points (APs) in downlink cell-free multiple-input multiple-output (MIMO) assuming that the APs distributed over the system coverage know only part of the instantaneous channel state information (CSI). As a beamforming (BF) method based on partial CSI, we use a layered partially non-orthogonal zero-forcing (ZF) method based on channel matrix muting, which is applicable to the case where different transmitting AP groups are selected for each UE under partial CSI conditions. We propose two AP clustering methods. Both proposed methods first tentatively determine the transmitting APs independently for each UE and then iteratively update the transmitting APs for each UE based on the estimated throughput considering the interference among the UEs. One of the two proposed methods introduces a UE cluster for each UE into the iterative updates of the transmitting APs to balance throughput performance and scalability. Computer simulations show that the proposed methods achieve higher geometric-mean and worst user throughput than those for the conventional methods.
Ryota KOBAYASHI Takanori HARA Yasuaki YUDA Kenichi HIGUCHI
This paper extends our previously reported non-orthogonal multiple access (NOMA)-based highly-efficient and low-latency hybrid automatic repeat request (HARQ) method for ultra-reliable low latency communications (URLLC) to the case with inter-base station cooperation. In the proposed method, delay-sensitive URLLC packets are preferentially multiplexed with best-effort enhanced mobile broadband (eMBB) packets in the same channel using superposition coding to reduce the transmission latency of the URLLC packet while alleviating the throughput loss in eMBB. Although data transmission to the URLLC terminal is conducted by multiple base stations based on inter-base station cooperation, the proposed method allocates radio resources to URLLC terminals which include scheduling (bandwidth allocation) and power allocation at each base station independently to achieve the short transmission latency required for URLLC. To avoid excessive radio resource assignment to URLLC terminals due to independent resource assignment at each base station, which may result in throughput degradation in eMBB terminals, we employ an adaptive path-loss-dependent weighting approach in the scheduling-metric calculation. This achieves appropriate radio resource assignment to URLLC terminals while reducing the packet error rate (PER) and transmission delay time thanks to the inter-base station cooperation. We show that the proposed method significantly improves the overall performance of the system that provides simultaneous eMBB and URLLC services.
Atsushi YAMAOKA Thomas M. HONE Yoshimasa EGASHIRA Keiichi YAMAGUCHI
With the advent of 5G and external pressure to reduce greenhouse gas emissions, wireless transceivers with low power consumption are strongly desired for future cellular systems. At the same time, increased modulation order due to the evolution of cellular systems will force power amplifiers to operate at much larger output power back-off to prevent EVM degradation. This paper begins with an analysis of load modulation and asymmetrical Doherty amplifiers. Measurement results will show an apparent 60% efficiency plateau for modulated signals with a large peak-to-average power ratio (PAPR). To exceed this efficiency limitation, the second part of this paper focuses on a new amplification topology based on the amalgamation between Doherty and outphasing. Measurement results of the proposed Doherty-outphasing power amplifier (DOPA) will confirm the feasibility of the approach with a modulated efficiency greater than 70% measured at 10 dB output power back-off.
Yasunori SUZUKI Shoichi NARAHASHI
This paper presents linearization technologies for high efficiency power amplifiers of cellular base stations. These technologies are important to actualizing highly efficient power amplifiers that reduce power consumption of the base station equipment and to achieving a sufficient non-linear distortion compensation level. It is well known that it is very difficult for a power amplifier using linearization technologies to achieve simultaneously high efficiency and a sufficient non-linear distortion compensation level. This paper presents two approaches toward addressing this technical issue. The first approach is a feed-forward power amplifier using the Doherty amplifier as the main amplifier. The second approach is a digital predistortion linearizer that compensates for frequency dependent intermodulation distortion components. Experimental results validate these approaches as effective for providing power amplification for base stations.
Junyao RAN Youhua FU Hairong WANG Chen LIU
We propose to use clustered interference alignment for the situation where the backhaul link capacity is limited and the base station is cache-enabled given MIMO interference channels, when the number of Tx-Rx pairs exceeds the feasibility constraint of interference alignment. We optimize clustering with the soft cluster size constraint algorithm by adding a cluster size balancing process. In addition, the CSI overhead is quantified as a system performance indicator along with the average throughput. Simulation results show that cluster size balancing algorithm generates clusters that are more balanced as well as attaining higher long-term throughput than the soft cluster size constraint algorithm. The long-term throughput is further improved under high SNR by reallocating the capacity of the backhaul links based on the clustering results.
Yancheng CHEN Ning LI Xijian ZHONG Yan GUO
Unmanned aerial vehicle mounted base stations (UAV-BSs) can provide wireless cellular service to ground users in a variety of scenarios. The efficient deployment of such UAV-BSs while optimizing the coverage area is one of the key challenges. We investigate the deployment of UAV-BS to maximize the coverage of ground users, and further analyzes the impact of the deployment of UAV-BS on the fairness of ground users. In this paper, we first calculated the location of the UAV-BS according to the QoS requirements of the ground users, and then the fairness of ground users is taken into account by calculating three different fairness indexes. The performance of two genetic algorithms, namely Standard Genetic Algorithm (SGA) and Multi-Population Genetic Algorithm (MPGA) are compared to solve the optimization problem of UAV-BS deployment. The simulations are presented showing that the performance of the two algorithms, and the fairness performance of the ground users is also given.
Yasunori SUZUKI Junya OHKAWARA Shoichi NARAHASHI
This paper proposes a method for reducing the peak-to-average power ratio (PAPR) at the output signal of a digital predistortion linearizer (DPDL) that compensates for frequency dependent intermodulation distortion (IMD) components. The proposed method controls the amplitude and phase values of the frequency components corresponding to the transmission bandwidth of the output signal. A DPDL employing the proposed method simultaneously provides IMD component cancellation of out-of-band components and PAPR reduction at the output signal. This paper identifies the amplitude and phase conditions to minimize the PAPR. Experimental results based on a 2-GHz band 1-W class power amplifier show that the proposed method improves the drain efficiency of the power amplifier when degradation is allowed in the error vector magnitude. To the best knowledge of the authors, this is the first PAPR reduction method for DPDL that reduces the PAPR while simultaneously compensating for IMD components.
This paper introduces a base station antenna system as a future cellular technology. The base station antenna system is the key to achieving high-speed data transmission. It is particularly important to improve the frequency reuse factor as one of the roles of a base station. Furthermore, in order to solve the interference problem due to the same frequency being used by the macro cell and the small cell, the author focuses on beam and null control using an AAS (Active Antenna System) and elucidates their effects through area simulations and field tests. The results showed that AAS can improve the SINR (signal to interference-plus-noise ratio) of the small cell area inside macro cells. The paper shows that cell quality performance can be improved by incorporating the AAS into a cellular base station as its antenna system for beyond 4G radio access technology including the 5G cellular system.
Young-Min KO Jae-Hyun RO Hyoung-Kyu SONG
In a wireless communication system, the base station failure can result in a communication disruption in the cell. This letter aims to propose an alternative way to cope with the base station failure in a wireless communication system, based on MIMO-OFDM. Cooperative communication can be a solution to the problem. Unlike general cooperative communication, this letter attempts to cover cooperation among adjacent base stations. This letter proposes a specific configuration of transmission signals which is applied to the CDD scheme. The proposed cooperative system can obtain multiplexing gain and diversity gain at the same time. A more reliable performance can be obtained by the proposed cooperative system which uses cooperation of adjacent base stations.
Nur Ellina Binti ISHAK Eiji KAMIOKA
In the conventional cellular macrocell implementation strategy, the main base station transmits the radio signals in the omnidirectional manner in order to provide a wide range of cellular transmission to the users. In reality, however, the users move from one place to another depending on their activities, hence, sometimes this creates areas where no user exists inside the macrocell. Nevertheless, the base station continues to transmit the radio signals to all the coverage areas due to its involuntary manner, thus causing waste of energy. In our previous work, an energy efficient LTE macrocell base station scheme based on hourly user location distribution, which utilized opportunistic beamforming, was proposed in order to provide the cellular transmission only to the area where the user density is high. The drawback of this scheme was that there were many users who cannot receive the cellular transmission because of the limitation of the beamforming shape. In this paper, to overcome this difficulty, a new energy efficient macrocell strategy will be proposed. Here, additional low power consumption femtocell access points are deployed inside the macrocell to support the energy efficient opportunistic beamforming based on the hourly user location distribution. Concretely, the femtocell access points are woken up only when the active calling users exist inside its range. The proposed new strategy will be evaluated in terms of the hourly successful calling user ratio, the total power consumption and the hourly average downlink throughput compared with the previously proposed beamforming transmission strategy and the conventional omnidirectional transmission. The results will show the effectiveness of the proposed strategy in providing an energy efficient cellular macrocell system with high quality cellular services.
Hidekazu SHIMODAIRA Gia Khanh TRAN Kei SAKAGUCHI Kiyomichi ARAKI Shinobu NANBA Satoshi KONISHI
Coordinated Multi-point (CoMP) transmission has long been known for its ability to improve cell edge throughput. However, in a CoMP cellular network, fixed CoMP clustering results in cluster edges where system performance degrades due to non-coordinated clusters. To solve this problem, conventional studies proposed dynamic clustering schemes. However, such schemes require a complex backhaul topology and are infeasible with current network technologies. In this paper, small power base stations (BSs) are introduced instead of dynamic clustering to solve the cluster edge problem in CoMP cellular networks. This new cell topology is called the diamond cellular network since the resultant cell structure looks like a diamond pattern. In our novel cell topology, we derive the optimal locations of small power base stations and the optimal resource allocation between the CoMP base station and small power base stations to maximize the proportional fair utility function. By using the proposed architecture, in the case of perfect user scheduling, a more than 150% improvement in 5% outage throughput is achieved, and in the case of successive proportional fair user scheduling, nearly 100% improvement of 5% outage throughput is achieved compared with conventional single cell networks.
Kazunori OKADA Takayuki SHIMAZU Akira FUJIKI Yoshiyuki FUJINO Amane MIURA
The Satellite/Terrestrial Integrated mobile Communication System (STICS), which allows terrestrial mobile phones to communicate directly through a satellite, has been studied [1]. Satellites are unaffected by the seismic activity that causes terrestrial damage, and therefore, the STICS can be expected to be a measure that ensures emergency call connection. This paper first describes the basic characteristics of call blocking rates of terrestrial mobile phone systems in areas where non-functional base stations are geographically clustered, as investigated through computer simulations that showed an increased call blocking rate as the number of non-functional base stations increased. Further simulations showed that restricting the use of the satellite system for emergency calls only ensures the STICS's capacity to transmit emergency communications; however, these simulations also revealed a weakness in the low channel utilization rate of the satellite system [2]. Therefore, in this paper, we propose increasing the channel utilization rate with a priority channel framework that divides the satellite channels between priority channels for emergency calls and non-priority channels that can be available for emergency or general use. Simulations of this priority channel framework showed that it increased the satellite system's channel utilization rate, while continuing to ensure emergency call connection [3]. These simulations showed that the STICS with a priority channel framework can provide efficient channel utilization and still be expected to provide a valuable secondary measure to ensure emergency communications in areas with clustered non-functional base stations during large-scale disasters.
Nobuhide NONAKA Anass BENJEBBOUR Kenichi HIGUCHI
This paper proposes applying random (opportunistic) beamforming to base station (BS) cooperative multiuser multiple-input multiple-output (MIMO) transmission. This proposal comprises two parts. First, we propose a block-diagonalized random unitary beamforming matrix. The proposed beamforming matrix achieves better throughput distribution compared to the purely random unitary beamforming matrix when the average path loss determined by distance-dependent loss and shadowing loss is largely different among transmitter antennas, which is true in BS cooperative MIMO. Second, we propose an online update algorithm for a random beamforming matrix to improve the throughput compared to the purely random and channel-independent beamforming matrix generation, especially when the number of users is low. Different from conventional approaches, the proposed online update algorithm does not increase the overhead of the reference signal transmission and control delay. Simulation results show the effectiveness of the proposed method using a block-diagonalized random unitary beamforming matrix with online updates in a BS cooperative multiuser MIMO scenario.
Nobuhide NONAKA Yoshihisa KISHIYAMA Kenichi HIGUCHI
This paper extends our previously proposed non-orthogonal multiple access (NOMA) scheme to the base station (BS) cooperative multiple-input multiple-output (MIMO) cellular downlink for future radio access. The proposed NOMA scheme employs intra-beam superposition coding of a multiuser signal at the transmitter and the spatial filtering of inter-beam interference followed by the intra-beam successive interference canceller (SIC) at the user terminal receiver. The intra-beam SIC cancels out the inter-user interference within a beam. This configuration achieves reduced overhead for the downlink reference signaling for channel estimation at the user terminal in the case of non-orthogonal user multiplexing and enables the use of the SIC receiver in the MIMO downlink. The transmitter beamforming (precoding) matrix is controlled based on open loop-type random beamforming using a block-diagonalized beamforming matrix, which is very efficient in terms of the amount of feedback information from the user terminal. Simulation results show that the proposed NOMA scheme with block-diagonalized random beamforming in BS cooperative multiuser MIMO and the intra-beam SIC achieves better system-level throughput than orthogonal multiple access (OMA), which is assumed in LTE-Advanced. We also show that BS cooperative operation along with the proposed NOMA further enhances the cell-edge user throughput gain which implies better user fairness and universal connectivity.
Shan ZHANG Yiqun WU Sheng ZHOU Zhisheng NIU
The traffic load of cellular networks varies in both time and spatial domains, causing many base stations (BS) to be under-utilized. Assisted by cell zooming, dynamic BS sleep control is considered as an effective way to improve energy efficiency during low traffic hours. Therefore, how densely the BSs should be deployed with cell zooming and BS sleeping is an important issue. In this paper, we explore the energy-optimal cellular network planning problem with dynamic BS sleeping and cell zooming for the cases in which traffic is uniformly distributed in space but time-varying. To guarantee the quality of multi-class services, an approximation method based on Erlang formula is proposed. Extensive simulations under our predefined scenarios show that about half of energy consumption can be saved through dynamic BS sleeping and power control. Surprisingly, the energy-optimal BS density we obtained is larger than the one without considering BS sleeping. In other words, deploying more BSs may help to save energy if dynamic BS sleeping is executed.
Hideya SO Atsuya ANDO Tomohiro SEKI Munenari KAWASHIMA Takatoshi SUGIYAMA
This paper proposes a sector base station antenna for mobile wireless communication systems employing multiple woodpile metamaterial reflectors and a multiband radiator that establishes the same beamwidth in the horizontal plane for more than two frequency bands. Electromagnetic Band Gap (EBG) characteristics of each metamaterial reflector can be controlled through structural parameters of the woodpile reflector, e.g., the rod width and rod spacing. As an example of the proposed antenna, a design for a triple-frequency-band antenna that radiates at 800 MHz, 2,GHz, and 4,GHz is shown. The algorithm used to adjust the beamwidth of the proposed antenna is newly introduced and adjusts the beamwidth to be the same for each band using the rod width of the woodpile. A prototype of the proposed antenna has the approximately 90$^{circ}$ beamwidth in the horizontal plane at the three frequencies, and the measurement results agree well with the electromagnetic field simulation results.
Yasunori SUZUKI Shoichi NARAHASHI Toshio NOJIMA
This paper presents an experimental investigation on the RF characteristics of a 3W-class cryogenically-cooled receiver amplifier employing a gallium-nitride high electron mobility transistor (GaN HEMT) with a blue light for mobile base stations. In general, a cryogenically-cooled receiver amplifier using a GaN HEMT exhibits unstable DC characteristics similar to those found in the current collapse phenomenon because the GaN HEMT loses thermal energy at cryogenic temperatures. The fabricated cryogenically-cooled receiver amplifier achieves stable DC characteristics by injecting blue light into the GaN HEMT instead of thermal energy. Experimental results show that the amplifier achieves fine stable DC characteristics for deviation in the drain-source current from 42% to 5% and RF characteristics for a maximum power added efficiency from 58% to 68% without and with the blue light at 60,K. The fabricated amplifier is effective in reducing the power consumption at cryogenic temperatures. To the best of our knowledge, this paper is the first report regarding RF characteristics of a cryogenically-cooled receiver amplifier using a blue light for mobile base stations.
Yusuke OSHIMA Anass BENJEBBOUR Kenichi HIGUCHI
This paper proposes a novel method for adaptively controlling the admission of interference to users in our previously proposed layered partially non-orthogonal block diagonalization (BD) precoding method for downlink multiuser multiple-input multiple-output (MIMO) transmission that employs cooperation among multiple base stations (BSs). The proposed method is applicable when some of the instantaneous channel state information (CSI) feedback between the user equipment and the respective BSs is missing if the path loss between the user equipment and BS is higher than a predetermined threshold. The proposed method suppresses the loss in the transmitter diversity (beam forming) gain caused by the perfect nulling of inter-user interference in BD. By allowing the inter-user interference from a link that has a high average path loss, the overall throughput performance of simple BD is enhanced. We show that the combination of layered transmission that restricts the set of BSs used for the signal transmission and adaptive control of interference admission significantly increases the throughput of BS cooperative multiuser MIMO with partial CSI feedback.
To develop an envelope-tracking (ET) amplifier for next-generation cellular base stations, we propose a wideband envelope modulator, consisting of a linear-mode class-B amplifier and a switch-mode class-D amplifier. The function of the modulator is to track the envelope signal and supply voltage to an RF amplifier. To meet the requirements of a large-current and high-voltage supply that can handle a wideband signal, an “Alexander current-feedback amplifier topology” is applied to the linear-mode class-B amplifier. The Alexander topology not only boosts the voltage but also enhances the current capacity of a commercial high-speed operational amplifier (op-amp) by means of a push-pull stage with current mirrors and a buffer amplifier at the output of the op-amp. With this topology, a linear-mode amplifier can provide several-ampere-level current to a 11-Ω load. A prototype of the wideband envelope modulator is shown to achieve the efficiency of 71% with a 20-MHz WiMAX envelope signal at output power of 72W.