The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] channel(1697hit)

641-660hit(1697hit)

  • Joint Water Filling-MRT Downlink Transmit Diversity for a Broadband Single-Carrier Distributed Antenna Network

    Hiroki MATSUDA  Kazuki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2753-2760

    In this paper, joint water filling and maximal ratio transmission (joint WF-MRT) downlink transmit diversity for a single-carrier distributed antenna network (SC DAN) is proposed. The joint WF-MRT transmit weight allocates the transmit power in both transmit antenna dimension and frequency dimension, i.e., the power allocation is done both across frequencies based on WF theorem and across transmit antennas based on MRT strategy. The cumulative distribution function (CDF) of the channel capacity achievable by joint WF-MRT transmit diversity is evaluated by Monte-Carlo numerical computation method. The channel capacities achievable with joint WF-MRT, MRT, and WF transmit weight (WF transmit weight is done across transmit antennas and frequencies based on WF theorem) are compared. It is shown that the joint WF-MRT transmit weight provides the highest channel capacity among three transmit weights.

  • Four-Transmit-Antenna Closed-Loop Orthogonal Space-Time Block Code with Efficient Feedback Utilization

    Kiho LEE  Sanhae KIM  Anjana PUNCHIHEWA  Oh-Soon SHIN  Yoan SHIN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E93-A No:10
      Page(s):
    1853-1856

    We propose the Combined Symbol-based Closed-Loop Orthogonal Space-Time Block Code (CS-CL-OSTBC) for four transmit antennas. In the multiple antenna systems, the CS-CL-OSTBC not only achieves full rate and full diversity with linear maximum-likelihood detection but also obtains higher feedback gain than existing CL-OSTBCs due to more efficient utilization of channel feedback information. In the proposed scheme, all the complex-valued channel coefficients are rotated to positive real values with exact channel phase feedback information. As a result, the channel gain can be expressed as the square of the sum of all positive real values and can obtain the maximum value without any loss. Simulation results on bit error rate performance show that the CS-CL-OSTBC outperforms existing CL-OSTBCs for various modulation schemes.

  • A Low-Profile Dual-Polarized Directional Antenna for Enhancing Channel Capacity in Indoor MIMO Systems

    Daisuke UCHIDA  Hiroyuki ARAI  Yuki INOUE  Keizo CHO  

     
    PAPER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2570-2577

    The use of directional antenna and polarization diversity techniques has been reported to achieve good MIMO performance. Low-profile, small structures are required to configure the MIMO antenna with these techniques. First, we assume downlink transmission in indoor MIMO systems and present the design guidelines for the radiation pattern to obtain large channel capacity by the ray-tracing method. We then propose a uni-directional, dual-polarized MIMO antenna with a thickness of 0.24λ based on the design guidelines. The proposed antenna consists of dipole antennas mounted horizontally to the ground plane and cavity backed slot antennas for vertical polarization. We apply the proposed antenna to 2 2 MIMO transmission and demonstrate the effectiveness of channel capacity enhancement in an actual environment. The improvement factor is revealed to be +16.2% with place averaged value compared to sleeve antenna configuration.

  • Performance Analysis of Alamouti Scheme in Time-Varying and Spatially Correlated Channels

    Eunju LEE  Jaedon PARK  Giwan YOON  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2804-2807

    In this paper, we analyze the performance of the 21 Alamouti scheme suggested by Alamouti, composed of the transmit space-time code and the simple linear decoding processing, in perfectly time-varying and spatially correlated channels. We derive the closed-form probability density function (PDF) of output signal-to-noise ratio (SNR) and outage probability of the Alamouti scheme as a function of spatial correlation coefficient in the consideration of no correlation in time. We observe that the performance of the Alamouti scheme is severely degraded when the channels are time-varying and spatially correlated.

  • Error Probability in Multichannel Reception with M-QAM, M-PAM and R-QAM Schemes under Generalized Fading

    Wamberto Jose Lira de QUEIROZ  Marcelo Sampaio de ALENCAR  Waslon Terllizzie Araujo LOPES  Francisco MADEIRO  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E93-B No:10
      Page(s):
    2677-2687

    This article presents a unified analytical framework to evaluate the bit error probability (BEP) of M-QAM, R-QAM and M-PAM modulation schemes for different types of fading channels, modeled with Hoyt, Rice, Rayleigh, Nakagami and Log-normal distributions. The mathematical development is obtained for maximal-ratio combining multichannel reception and assumes independent fading paths. The new BEP expressions are written in terms of the integral of the moment generating funcion of the instantaneos signal-to-noise ratio. The advantage of this approach is that it can be applied to any type of fading, and the integrals, even though they do not provide exact expressions, can be numerically evaluated.

  • Computationally Efficient Multi-Cell Joint Channel Estimation in TDD-CDMA Systems

    Peng XUE  Duk Kyung KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:9
      Page(s):
    2465-2468

    In this letter, a low complexity multi-cell joint channel estimation (MJCE) scheme is proposed. With proper arrangement of the multi-cell midamble matrix and channel impulse response (CIR) vector, the MJCE operation is formulated to solve a block-Toeplitz linear system. The block-Levinson algorithm is adopted to solve this problem instead of the Cholesky algorithm. Our results show that the proposed MJCE scheme can be a practical choice with significantly lower complexity, compared with the previous schemes with the Cholesky algorithm.

  • Multiple Sound Source Localization Based on Inter-Channel Correlation Using a Distributed Microphone System in a Real Environment

    Kook CHO  Hajime OKUMURA  Takanobu NISHIURA  Yoichi YAMASHITA  

     
    PAPER-Microphone Array

      Vol:
    E93-D No:9
      Page(s):
    2463-2471

    In real environments, the presence of ambient noise and room reverberations seriously degrades the accuracy in sound source localization. In addition, conventional sound source localization methods cannot localize multiple sound sources accurately in real noisy environments. This paper proposes a new method of multiple sound source localization using a distributed microphone system that is a recording system with multiple microphones dispersed to a wide area. The proposed method localizes a sound source by finding the position that maximizes the accumulated correlation coefficient between multiple channel pairs. After the estimation of the first sound source, a typical pattern of the accumulated correlation for a single sound source is subtracted from the observed distribution of the accumulated correlation. Subsequently, the second sound source is searched again. To evaluate the effectiveness of the proposed method, experiments of two sound source localization were carried out in an office room. The result shows that sound source localization accuracy is about 99.7%. The proposed method could realize the multiple sound source localization robustly and stably.

  • BS-CPA: Built-In Determined Sub-Key Correlation Power Analysis

    Yuichi KOMANO  Hideo SHIMIZU  Shinichi KAWAMURA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E93-A No:9
      Page(s):
    1632-1638

    Correlation power analysis (CPA) is a well-known attack against cryptographic modules with which an attacker evaluates the correlation between the power consumption and the sensitive data candidates calculated from a guessed sub-key and known data such as plaintexts and ciphertexts. This paper enhances CPA to propose a new general power analysis, built-in determined sub-key CPA (BS-CPA), which finds a new sub-key by using the previously determined sub-keys recursively to compute the sensitive data candidates and to increase the signal-to-noise ratio in its analysis. BS-CPA also reuses the power traces in the repetitions of finding sub-keys to decrease the total number of the required traces for determining the all sub-keys. BS-CPA is powerful and effective when the multiple sensitive data blocks such as sbox outputs are processed simultaneously as in the hardware implementation. We apply BS-CPA to the power traces provided at the DPA contest and succeed in finding a DES key using fewer traces than the original CPA does.

  • Performance of Coded CS-CDMA/CP with M-ZCZ Code over a Fast Fading Channel

    Li YUE  Chenggao HAN  Nalin S. WEERASINGHE  Takeshi HASHIMOTO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:9
      Page(s):
    2381-2388

    This paper studies the performance of a coded convolutional spreading CDMA system with cyclic prefix (CS-CDMA/CP) combined with the zero correlation zone code generated from the M-sequence (M-ZCZ code) for downlink transmission over a multipath fast fading channel. In particular, we propose a new pilot-aided channel estimation scheme based on the shift property of the M-ZCZ code and show the robustness of the scheme against fast fading through comparison with the W-CDMA system empolying time-multiplexed pilot signals.

  • A Novel Transmit Scheme in CDM-Based MIMO Channel Sounding Systems

    Minjae KIM  Heung-Ryeol YOU  Hyuckjae LEE  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E93-B No:9
      Page(s):
    2428-2432

    The code division multiplexing (CDM)-based MIMO channel sounder architecture is efficient at measuring fast fading MIMO channels. This paper examines loosely synchronous (LS), CAZAC, Kasami, and Chaotic sequences as probing signals in the CDM architecture. After comparing the performance of the channel measurement among the sequences, it is concluded that the LS sequences are the most appropriate codes for the probing signals. However, because LS sequences have a significant drawback in that the number of transmit antennas is limited to less than 4, we propose using a hybrid architecture combining CDM with TDM for supporting a greater number of transmit antennas. The simulation results show that the proposed scheme can improve the measurement performance when more than 4 transmit antennas are used.

  • A Low-Complexity Sparse Channel Estimation Method for OFDM Systems

    Bin SHENG  Pengcheng ZHU  Xiaohu YOU  Lan CHEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:8
      Page(s):
    2211-2214

    In this letter, we propose a low-complexity sparse channel estimation method for orthogonal frequency division multiplexing (OFDM) systems. The proposed method uses a discrete Fourier transform (DFT)-based technique for channel estimation and a novel sorted noise space discrimination technique to estimate the channel length and tap positions. Simulation results demonstrate that the reduction in signal space improves the channel estimation performance.

  • Multiple-Valued Constant-Power Adder and Its Application to Cryptographic Processor

    Naofumi HOMMA  Yuichi BABA  Atsushi MIYAMOTO  Takafumi AOKI  

     
    PAPER-Application of Multiple-Valued VLSI

      Vol:
    E93-D No:8
      Page(s):
    2117-2125

    This paper proposes a constant-power adder based on multiple-valued logic and its application to cryptographic processors being resistant to side-channel attacks. The proposed adder is implemented in Multiple-Valued Current-Mode Logic (MV-CML). The important feature of MV-CML is that the power consumption can be constant regardless of input values, which makes it possible to prevent power-analysis attacks using dependencies between power consumption and intermediate values or operations of the executed cryptographic algorithms. In this paper, we focus on a multiple-valued Binary Carry-Save adder based on the Positive-Digit (PD) number system and its application to RSA processors. The power characteristic of the proposed design is evaluated with HSPICE simulation using 90 nm process technology. The result shows that the proposed design can achieve constant power consumption with lower performance overhead in comparison with the conventional binary design.

  • Serial Iterative Joint Carrier Frequency Synchronization and Channel Estimation for OFDM

    Shaopeng WANG  Shihua ZHU  Yi LI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:7
      Page(s):
    1906-1911

    A scheme that jointly estimates carrier frequency offset and channel is proposed for the orthogonal frequency division multiplexing (OFDM) system. In the proposed scheme, the carrier frequency offset (CFO) and the channel state information (CSI) are first estimated by an minimum mean square error (MMSE) estimator and an maximum likelihood (ML) estimator, respectively. By exchanging the estimation information between these two estimators, the final estimation of CFO and CSI is then obtained by an iterative method. In the iterative process, the effect of imperfect CSI is considered. It can improve the estimation precision for a shorter preamble and accelerate the iterative convergence rate. To reduce the complexity of the proposed scheme, a procedure is adopted to eliminate the inverse operation of covariance matrix that is recalculated at each iteration. In addition, a sufficient condition for the convergence of the proposed method is deduced. The numerical simulation results show that the BER performance of our scheme is better than that of joint MLE for a shorter preamble and is comparable to that of joint MLE for a longer preamble. Furthermore, the average iterative time of our method is reduced by half as compared to the MLE methods without considering the effect of imperfect CSI.

  • Feedback Bandwidth Allocation for Users under Different Types of Channels in Multi-Antenna Systems

    Lv DING  Wei XU  Bin JIANG  Xiqi GAO  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E93-B No:7
      Page(s):
    1980-1983

    This paper considers an optimized limited feedback design for a multi-antenna system serving multiple users under different types of channels: Rayleigh distributed and line-of-sight distributed channels. Since the users are asymmetric, we propose an optimized feedback bandwidth allocation scheme for users under a total feedback rate constraint. The allocation scheme is designed according to the long-term channel type information of users, and thus it can be efficiently implemented. Numerical results verify the effectiveness of our proposed scheme.

  • A WDFT-Based Channel Estimator with Non-adaptive Linear Prediction in Non-sample Spaced Channels

    Jeong-Wook SEO  Won-Gi JEON  Jong-Ho PAIK  Seok-Pil LEE  Dong-Ku KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E93-A No:7
      Page(s):
    1375-1378

    This letter addresses the edge effect on a windowed discrete Fourier transform (WDFT)-based channel estimator for orthogonal frequency division multiplexing (OFDM) systems with virtual carriers in non-sample spaced channels and derives a sufficient condition to reduce the edge effect. Moreover, a modified WDFT-based channel estimator with multi-step linear prediction as an edge effect reduction technique is proposed. Simulation results show that it offers around 5 dB signal-to-noise ratio (SNR) gain over the conventional WDFT-based channel estimator at bit error rate (BER) of 10-3.

  • High-Speed Low-Complexity Architecture for Reed-Solomon Decoders

    Yung-Kuei LU  Ming-Der SHIEH  

     
    PAPER-Computer System

      Vol:
    E93-D No:7
      Page(s):
    1824-1831

    This paper presents a high-speed, low-complexity VLSI architecture based on the modified Euclidean (ME) algorithm for Reed-Solomon decoders. The low-complexity feature of the proposed architecture is obtained by reformulating the error locator and error evaluator polynomials to remove redundant information in the ME algorithm proposed by Truong. This increases the hardware utilization of the processing elements used to solve the key equation and reduces hardware by 30.4%. The proposed architecture retains the high-speed feature of Truong's ME algorithm with a reduced latency, achieved by changing the initial settings of the design. Analytical results show that the proposed architecture has the smallest critical path delay, latency, and area-time complexity in comparison with similar studies. An example RS(255,239) decoder design, implemented using the TSMC 0.18 µm process, can reach a throughput rate of 3 Gbps at an operating frequency of 375 MHz and with a total gate count of 27,271.

  • IP-MAC: A Distributed MAC for Spatial Reuse in Wireless Networks

    Md. Mustafizur RAHMAN  Choong Seon HONG  Sungwon LEE  JangYeon LEE  Jin Woong CHO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1534-1546

    The CSMA/CA driven MAC protocols withhold packet transmissions from exposed stations when they detect carrier signal above a certain threshold. This is to avoid collisions at other receiving stations. However, this conservative scheme often exposes many stations unnecessarily, and thus minimizes the utilization of the spatial spectral resource. In this paper, we demonstrate that remote estimation of the status at the active receivers is more effective at avoiding collisions in wireless networks than the carrier sensing. We apply a new concept of the interference range, named as n-tolerant interference range, to guarantee reliable communications in the presence of n (n≥ 0) concurrent transmissions from outside the range. We design a distributed interference preventive MAC ( IP-MAC ) using the n-tolerant interference range that enables parallel accesses from the noninterfering stations for an active communication. In IP-MAC, an exposed station goes through an Interference Potentiality Check (IPC) to resolve whether it is potentially interfering or noninterfering to the active communication. During the resolve operation, IPC takes the capture effect at an active receiver into account with interfering signals from a number of possible concurrent transmissions near that receiver. The performance enhancement offered by IP-MAC is studied via simulations in different environments. Results reveal that IP-MAC significantly improves network performance in terms of throughput and delay.

  • MIMO-OC Scheme to Suppress Co-channel Interference

    Wei Jiong ZHANG  Xi Lang ZHOU  Rong Hong JIN  

     
    LETTER-Digital Signal Processing

      Vol:
    E93-A No:6
      Page(s):
    1244-1247

    In this letter, we present a multiple-input multiple-output (MIMO) optimal combining (OC) scheme based on alternate iteration. With the channel state information (CSI) of co-channel interferers (CCIs), this algorithm can be used in flat fading and frequency selective channels to suppress CCIs. Compared with the optimal transceiver of MIMO maximal ratio combining (MRC) systems, results of simulation show that this scheme improves the uplink transmission performance significantly.

  • A Real-Time Joint Source-Channel Coding Based on a Simplified Modeling of the Residual Video Packet Loss

    Yo-Won JEONG  Jae Cheol KWON  Jae-kyoon KIM  Kyu Ho PARK  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E93-B No:6
      Page(s):
    1583-1593

    We propose a simplified model of real-time joint source-channel coding, which can be used to adaptively determine the quality-optimal code rate of forward error correction (FEC) coding. The objective is to obtain the maximum video quality in the receiver, while taking time-varying packet loss into consideration. To this end, we propose a simplified model of the threshold set of the residual video packet loss rate (RVPLR). The RVPLR is the rate of residual loss of video packets after channel decoding. The threshold set is defined as a set of discrete RVPLRs in which the FEC code rate must be changed in order to maintain minimum distortion during increases or decreases of channel packet loss. Because the closed form of the proposed model is very simple and has one scene-dependent model parameter, a video sender can be easily implemented with the model. To train the scene-dependent model parameters in real-time, we propose a test-run method. This method accelerates the test-run while remaining sufficiently accurate for training the scene-dependent model parameters. By using the proposed model and test-run, the video sender can always find the optimal code rate on the fly whenever there is a change in the packet loss status in the channel. An experiment shows that the proposed model and test-run can efficiently determine the near-optimal code rate in joint source-channel coding.

  • Pilot-Aided Channel Estimation for WiMAX 802.16e Downlink Partial Usage of Subchannel System Using Least Squares Line Fitting

    Phuong Thi Thu PHAM  Tomohisa WADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1494-1501

    This paper presents a pilot-aided channel estimation method which is particularly suitable for mobile WiMAX 802.16e Downlink Partial Usage of Subchannel mode. Based on this mode, several commonly used channel estimation methods are studied and the method of least squares line fitting is proposed. As data of users are distributed onto permuted clusters of subcarriers in the transmitted OFDMA symbol, the proposed channel estimation method utilizes these advantages to provide better performance than conventional approaches while offering remarkably low complexity in practical implementation. Simulation results with different ITU-channels for mobile environments show that depending on situations, enhancement of 5 dB or more in term of SNR can be achieved.

641-660hit(1697hit)