The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] dielectric(228hit)

81-100hit(228hit)

  • Beam Scanning Comb-Line Antenna Loading Movable Dielectric Plate

    Kazuhiro KITATANI  Takahiko TERADA  Yasuyuki OKAMURA  

     
    PAPER-Antennas

      Vol:
    E90-B No:9
      Page(s):
    2213-2218

    This paper describes a beam scanning antenna that consists of a movable dielectric plate loaded onto a microstrip comb-line antenna. This type of antenna uses a mechanical system and so offers a simple structure and low cost. The main beam direction of the proposed antenna is changed by moving the dielectric plate. The guide wavelength of the microstrip line was measured at the quasi-millimeter wave band (20 GHz) when moving the dielectric plate to investigate the possibility of beam scanning. The proposed antenna was fabricated to experimentally demonstrate its principle operation. A possible beam scanning angle of 20 degrees was confirmed.

  • Leaky Wave Antenna Based on Evanescent-Mode Left-Handed Transmission Lines Composed of a Cut-Off Parallel-Plate Waveguide Loaded with Dielectric Resonators

    Tetsuya UEDA  Naobumi MICHISHITA  Anthony LAI  Tatsuo ITOH  

     
    PAPER-Antennas/Systems

      Vol:
    E90-C No:9
      Page(s):
    1770-1775

    Leaky wave radiation from evanescent-mode left-handed (LH) transmission lines is investigated that are composed of a cut-off parallel plate waveguide loaded with a one-dimensional (1-D) array of the disc type dielectric resonators. The apertures are placed on side walls of the parallel plate waveguide. First of all, the dispersion diagram is numerically obtained with the complex eigenmode solutions. The simulated and measured backward wave radiation characteristics validate the backward wave propagation along the 1-D waveguides. Based on the concept, the backfire leaky wave antenna was designed and demonstrated with the 15-cell structure. The beam scanning with the operational frequency was achieved by more than 30 degrees.

  • Near-Field Transmission Imaging by 60 GHz Band Waveguide-Type Microscopic Aperture Probe

    Somboon THEERAWISITPONG  Toshitatsu SUZUKI  Tadahiro NEGISHI  Yasuo WATANABE  

     
    PAPER-Measurements

      Vol:
    E90-B No:9
      Page(s):
    2387-2393

    Near-field imaging has been intensively investigated to observe the shape and the physical properties of objects, aiming at wide applications in the areas of science and engineering. In this research, by using 60 GHz band waveguide-type microscopic aperture probe, the characteristics of the near-field imaging in transmission mode have been studied by simulation and experiment. The probe is made of a WR-15 rectangular waveguide with end-shielded metal plate and a 0.5 mm-diameter aperture. In the simulation, at first, the electric field distribution at the aperture, at the rear (waveguide) and the front positions (free space) are presented. Second, the transmitted electric fields are presented for three cases: (a) scanning of a dielectric slit, (b) by varying the distance between the aperture and a dielectric sample, and (c) scanning of a dielectric groove. In the experiment, the lateral resolution with a two-slit and the depth resolution with grooves having various depths in rectangular format are described and the results show both resolutions to be much shorter than the wavelength. Finally, the scanned images of the letter N punched through a dielectric material and a leaf are demonstrated.

  • Improved Solution of Tensor-Volume Integral Equation Using Mixed-Domain MoM with Polynomial Expansion

    Amin SAEEDFAR  Kunio SAWAYA  

     
    PAPER-Antennas and Propagation

      Vol:
    E90-B No:3
      Page(s):
    607-620

    A new approach for solution of the Tensor-Volume Integral Equation (TVIE) using Galerkin-based moment method (MoM) for three-dimensional dielectric bodies is proposed. Two problems of plane wave scattering by a dielectric sphere and a thin-wire antenna in close proximity to a dielectric body are investigated. In both cases, cubic modeling is applied and a combination of entire-domain and sub-domain basis functions, including three-dimensional polynomial functions with different degrees is utilized for field expansion inside dielectric bodies. Power polynomial is adopted for this purpose and its property is discussed over the proposed mixed-domain MoM formulation. Numerical examples show that based on the proposed method, a relative fast algorithm and suitable accuracy are achieved compared with conventional MoM. The accuracy of the proposed method is verified by comparing it with the Mie theory, conventional MoM and the FDTD method.

  • Scattering of a Gaussian Beam by Dielectric Cylinders with Arbitrary Shape Using Multigrid-Moment Method

    Mitsuhiro YOKOTA  Kunihiro AOYAMA  

     
    PAPER-Numerical Techniques, Computational Electromagnetic

      Vol:
    E90-C No:2
      Page(s):
    258-264

    Scattering of a Gaussian beam by dielectric cylinders with arbitrary shape is analyzed by using the moment method combined with multigrid method. The effectiveness of the multigrid-moment method is firstly shown from the CPU time and residual norm viewpoints. The effect of the initial value for the multigrid cycle is also considered. After that, the scattered fields by two dielectric convex lens are calculated and the effect of the radius of curvature, width and the distance between each lens on the scattered field is examined.

  • Scattering of Electromagnetic Waves by Multilayered Inhomogeneous Columnar Dielectric Gratings Loaded Rectangular Dielectric Constant

    Ryosuke OZAKI  Tsuneki YAMASAKI  Takashi HINATA  

     
    PAPER-Periodic Structures

      Vol:
    E90-C No:2
      Page(s):
    295-303

    In this paper, we propose a new technique for the scattering problems of multilayered inhomogeneous columnar dielectric gratings loaded rectangular dielectric constant both TM and TE waves using the combination of improved Fourier series expansion method, the multilayer method, and the eigenvalue matrix method. Numerical results are given for the power transmission coefficients in the parameters ε 3 /ε 0 , c/p, and b/d of rectangular cylinders to obtain the basic characteristic of the power transmission coefficients and reflection coefficients switching or frequency selective devices for both TM and TE waves. The influence of the incident angle and frequency of the transmitted power are also discussed in the connection with the propagation constant β in the free mode.

  • Guiding and Nanofocusing of Two-Dimensional Optical Beam for Nanooptical Integrated Circuits

    Junichi TAKAHARA  Fuminori KUSUNOKI  

     
    INVITED PAPER

      Vol:
    E90-C No:1
      Page(s):
    87-94

    Guiding and nanofocusing of a two-dimensional (2D) optical beam in a negative-dielectric-gap waveguide is studied theoretically. An index-guiding method along the dielectric core embedded in the negative-dielectric-gap is proposed and the confinement properties of the 2D optical beam are studied by the effective-refractive-index method and FDTD simulations. We have shown that the lateral beam width of the 2D optical beam can be shrunk to zero beyond the diffraction limit. A tapered negative-dielectric-gap waveguide using adiabatic propagation achieves nano-focusing and can be applied to nano-optical couplers. This is a gateway from conventional dielectric waveguides to nano-optical integrated circuits.

  • A Low Loss Multi-Layer Dielectric Waveguide Filter for 60-GHz System-on-Package Applications

    Dong Yun JUNG  Won Il CHANG  Ji Hoon KIM  Chul Soon PARK  

     
    LETTER

      Vol:
    E89-A No:6
      Page(s):
    1690-1691

    For V-band applications, this paper presents a fully embedded multi-layer dielectric waveguide filter (DWGF) with very low insertion loss and small size, which does not need any more assemblies such as flip-chip bonding and bond wires. The top and bottom plane are grounded, and therefore, although we make a metal housing, there will be no resonance occurrences. Especially, the proposed structure is very suitable for MMICs interconnection because the in/output pads consist of conductor backed co-planar waveguide (CBCPW). The filter is formed incorporating metallized through holes in low temperature co-fired ceramic (LTCC) substrates with relative dielectric constant of 7.05. The total volume of the filter including transitions is 4.5 mm2.65 mm0.4 mm. A fabricated DWGF with four transitions shows an insertion loss and a return loss of 2.95 dB and less than 15 dB at the center frequency of 62.17 GHz, respectively. According to the authors' knowledge, the proposed filter shows the lowest insertion loss among the embedded multi-layer millimeter-wave filters ever reported for 60 GHz applications.

  • Microwave Properties of Sapphire Resonators with a Gap and Their Applicability for Measurements of the Intrinsic Surface Impedance of Thin Superconductor Films

    Sang Young LEE  Jae Hun LEE  Woo Il YANG  John H. CLAASSEN  

     
    PAPER

      Vol:
    E89-C No:2
      Page(s):
    132-139

    A dielectric resonator with a gap between the top plate and the rest has been useful for measuring the penetration depth (λ) of superconductor films, a parameter essential for obtaining the intrinsic microwave surface resistance (Rs) of thin superconductor films. We investigated effects of a gap on the microwave properties of TE0ml-mode sapphire resonators with a gap between the top plate and the rest of the resonator. Regardless of a 10 µm-gap in TE0ml-mode sapphire resonators, variations of the TE0ml-mode resonant frequency on temperature (Δf0) as well as TE0ml-mode unloaded Q remained almost the same due to lack of axial currents inside the resonator and negligible radiation effects. The λ of YBa2Cu3O7-δ (YBCO) films obtained from a fit to the temperature-dependent Δf0 appeared to be 195 nm at 0 K and 19.3 GHz, which was well compared with the corresponding value of 193 nm at 10 kHz measured by the mutual inductance method. The intrinsic Rs of YBCO films on the order of 1 mΩ, and the tan δ of sapphire on the order of 10-8 at 15 K and 40 GHz could be measured simultaneously using sapphire resonators with a 10 µm-gap.

  • Microwave Power Dependence Measurement of Surface Resistance of Superconducting Films Using a Dielectric Resonator Method with Circle Fit and Two-Mode Techniques

    Haruhiko OBARA  Shin KOSAKA  

     
    PAPER

      Vol:
    E89-C No:2
      Page(s):
    125-131

    A system was developed to measure the microwave power dependence of the surface resistance superconductor films. The system uses a dielectric resonator method combined with a circle fit technique and a two-mode technique to measure the microwave surface resistance of superconductor films. For validation, this system was used to measure such surface resistance for superconductor films with different surface morphologies. Significant difference in microwave power dependence of surface resistance was observed. This measurement system proved suitable for evaluating superconducting films for passive microwave devices, including high power devices such as transmitting filters.

  • Non-destructive Dielectric Measurement of Solid Lossy Dielectric Material Using Open-Ended Waveguide Infilled with Low-Loss Dielectric Material

    Hidetoshi EBARA  Daisuke MIKI  Teruo ONISHI  Shinji UEBAYASHI  Osamu HASHIMOTO  

     
    PAPER

      Vol:
    E89-C No:1
      Page(s):
    30-37

    This paper proposes a non-destructive dielectric measurement method for a solid lossy dielectric material with sufficiently large dimensions compared to the wavelength. The proposed non-destructive measurement method employs an open-ended waveguide infilled with a low-loss dielectric material at the end of the waveguide. A numerical model of the open-ended waveguide attached to the surface of a solid dielectric material is simulated using the FDTD method. The reflection coefficient is calculated while the complex permittivity of the solid lossy dielectric material is varied. A permittivity estimation chart representing the relationship between the complex permittivity and the reflection coefficient is derived at 2 GHz. The measured reflection coefficient is plotted on the permittivity estimation chart. The chart indicates that the reflection coefficient varies drastically according to the variation in the complex permittivity of the solid dielectric material if a low-loss dielectric material is used. As a result, it became possible to estimate the complex permittivity of the solid lossy dielectric material by measuring the reflective coefficient. The estimated complex permittivity using the proposed method is comparable to the measured complex permittivity using the S-parameter method employing a coaxial line.

  • Realization of Attenuation Poles, Spurious Resonance Suppression and Size Reduction by Microstrip SIR Loaded with Dielectric Rods

    Ramesh K. POKHAREL  Kouji WADA  Osamu HASHIMOTO  Takeshi TAKAHASHI  

     
    PAPER-Devices

      Vol:
    E88-C No:12
      Page(s):
    2302-2309

    Characteristics of a class of stepped-impedance resonators (SIRs) which is loaded with two dielectric rods, are investigated by a Finite-Difference Time-Domain (FDTD) method. Dielectric rods to be inserted between a strip conductor and the ground plane have higher relative permittivity than that of the substrate. When a tapped half-wavelength (λ/2) microstrip resonator is loaded with two dielectric rods, the electric length of a loaded λ/2 resonator becomes longer than λ/2, which makes its fundamental resonant frequency () to be generated on the region lower than that of an unloaded λ/2 resonator (fr) and its first spurious response (fsp1) is generated on the region higher than 2. Therefore, to shift back to fr, the resonator's length is to be reduced, and this, in turns, suppress the spurious responses. Then, the resonant characteristics of an SIR employing the proposed method has also been investigated, and it is found that this is capable of suppressing the spurious responses in wideband together with an attenuation pole in the stopband, and of further reducing the resonator's length. Therefore, wide exploitation of the presented method can be expected in the filter design based on the LTCC technique.

  • A Beam Adjustable Leaky-Wave Antenna Using a Moveable Dielectric Slab inside a Waveguide

    Cherng-Chyi HSIAO  Ruey Bing HWANG  

     
    PAPER-Antenna Design

      Vol:
    E88-C No:12
      Page(s):
    2250-2257

    In this paper, we presented a beam adjustable antenna made up of a slit waveguide and a dielectric slab. In order to change the radiation main-beam angle, we changed the phase constant of the waveguide mode by inserting a dielectric slab for perturbing its field distribution. The direction of radiation main-beam can be steered by dynamically changing the position of the dielectric slab. For the theoretical analysis, the dispersion relation, including the phase and attenuation constants, was determined by solving the transverse resonance equation. An agreement between the theoretical and experimental radiation pattern verifies the beam-steering mechanism. Up to 23beam-steering angle can be achieved using this approach.

  • Frequency-Domain and Time-Domain Novel Uniform Asymptotic Solutions for Scattered Fields by an Impedance Cylinder and a Dielectric Cylinder

    Teruhiko IDA  Toyohiko ISHIHARA  Keiji GOTO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E88-C No:11
      Page(s):
    2124-2135

    Frequency-domain and time-domain novel uniform asymptotic solutions for the scattered fields by an impedance cylinder and a dielectric cylinder, with a radius of curvature sufficiently larger than the wavelength, are presented in this paper. The frequency-domain novel extended UTD and the modified UTD solutions, derived by retaining the higher-order terms in the integrals for the scattered fields, may be applied in the deep shadow region in which the conventional UTD solutions produce the substantial errors. The novel time-domain uniform asymptotic solutions are derived by applying the saddle point technique in evaluating the inverse Fourier transform. We have confirmed the accuracy and validity of the uniform asymptotic solutions both in the frequency-domain and in the time-domain by comparing those solutions with the reference solutions calculated from the eigenfunction expansion (frequency-domain) and from the hybrid eigenfunction expansion and fast Fourier transform (FFT) method (time-domain).

  • Influence of Phantom Shell on SAR Measurement in 3-6 GHz Frequency Range

    Teruo ONISHI  Shinji UEBAYASHI  

     
    PAPER-Biological Effects

      Vol:
    E88-B No:8
      Page(s):
    3257-3262

    This paper presents the results of an investigation on the effect of a thin low-dielectric material (phantom shell) on measuring the Specific Absorption Rate (SAR) in the frequency range of 3 to 6 GHz. The International Electrotechnical Commission (IEC) has started to develop a SAR measurement procedure in order to cover such frequencies. In the procedure, the SAR is measured in a liquid phantom, which is a shell filled with tissue-equivalent liquid. Although the shell is thin and has low-dielectric properties, the influence of the phantom shell is thought to increase at higher frequencies. Therefore, an investigation using the transmission line model and the Finite-Difference Time-Domain (FD-TD) method was conducted. To verify the FD-TD results, measurements were also carried out. The calculation results using the FD-TD method agree well with the measurement results. If the frequency is higher, the SAR is affected by the shell even though the shell is thinner and has much lower dielectric properties than those of the tissue-equivalent liquid. Specifically, the SAR with the shell is approximately 1.3 times higher than without the shell at 5.2 GHz for the maximum case. The deviations in the loss and the thickness for the shell do not affect the SAR more than the relative permittivity.

  • Measurement of the Dielectric Recovery Strength and Reignition of AC Contactors

    Degui CHEN  Xingwen LI  Ruicheng DAI  

     
    PAPER-Contactors & Circuit Breakers

      Vol:
    E88-C No:8
      Page(s):
    1641-1646

    In order to understand the recovery characteristics of AC contactors and improve their performance, experimental measurements were used to investigate the arcing gap recovery process including dielectric recovery strength and reignition, to a pair of splitter plate together and four kinds of arc chamber of AC contactors. A special circuit was designed to perform the work. It demonstrates that under lower current, the dielectric recovery strengths of all kinds of arc chambers in the paper have no significant difference. However, with the increase of current, the difference of dielectric recovery strengths of them is much clear. The reignition characteristics of a pair of splitter plate and arc chambers are similar. With different configurations of arc chambers and prospective currents, the forms of post current zero reignition are distinct.

  • Analysis of Dielectric-Loaded Waveguide Slot Antennas by the Hybrid Mode-Matching/Moment Method

    Boyu ZHENG  Zhongxiang SHEN  

     
    PAPER-Antennas and Propagation

      Vol:
    E88-B No:8
      Page(s):
    3416-3427

    This paper presents a hybrid technique combining the mode-matching method and moment method to analyze various slots cut in the wall of a rectangular waveguide partially filled with a dielectric slab. The waveguide slot structure is decomposed into two parts: a dielectric-loaded waveguide T-junction and an open-ended waveguide radiating into half space. The T-junction is analyzed by the mode-matching method, while the open-ended waveguide is characterized by the moment method with the modal functions in the slot being the full domain basis functions. A new approach for computing multidimensional integrals is proposed in the formulation of the open-ended waveguide, which greatly reduces the computation effort. The T-junction and the open-ended waveguide are then cascaded to obtain the final scattering parameters of the slot structure. Numerical results for different slots on a dielectric-loaded rectangular waveguide calculated by the hybrid method are presented and validated by comparing with measured and simulated data by Ansoft's HFSS. Good agreement is observed for all the cases considered. Parametrical studies are also conducted to examine the effect of the dielectric slab's thickness and relative permittivity on slot antenna's impedance/admittance.

  • Method for Estimating Complex Permittivity Based on Measuring Effective Permittivity of Dielectric Mixtures in Radio Frequency Band

    Hidetoshi EBARA  Kensuke TANI  Teruo ONISHI  Shinji UEBAYASHI  Osamu HASHIMOTO  

     
    PAPER-Biological Effects

      Vol:
    E88-B No:8
      Page(s):
    3269-3274

    This paper proposes a method for estimating the complex permittivity of a small quantity of a sample such as a biological membrane. The feature of this method is that a material with an unknown complex permittivity is mixed with a material with a known complex permittivity in a number of volume ratios. The unknown complex permittivity is estimated by measuring the effective permittivity of the mixtures and by using the mixing formula, which is applied to the composite material. The validity of this estimation method is evaluated using a phospholipid, which is the primary constituent of a biological membrane, in the frequency range from 0.8 GHz to 6 GHz. We confirm that the measured effective permittivity of the phospholipid mixtures, which comprise the phospholipid and Ringer's solution in a number of volume ratios, corresponds to that of the Lichtenecker formula. Additionally, by preparing a number of samples with varying volume ratios the estimation error can be decreased. This estimation method is considered to be effective in the measurement of the complex permittivity for a biological membrane.

  • High Q or High Effective Permittivity Artificial Dielectric Resonator in a Waveguide

    Hiroshi KUBO  Tsuyoshi MUKAI  Atsushi SANADA  

     
    PAPER-Resonators & Filters

      Vol:
    E88-C No:7
      Page(s):
    1412-1419

    New strip arrangements for high Q or high effective permittivity are proposed for artificial dielectric resonators in a waveguide. The quality factor and the effective permittivity are discussed by changing strip arrangement composing the artificial dielectric. Concentrating strips from both sides to the middle in the waveguide leads to increase of unloaded Q. The value becomes high to several thousands by decreasing dielectric loss of the material. Interdigital strip arrangement makes the effective permittivity very high. A resonator of the strip arrangement has effective permittivity over 800 and unloaded Q over 1000. Moreover the resonator exhibits a good spurious characteristic with no unnecessary resonant mode throughout several harmonics range.

  • A NRD Guide Fed Dielectric Lens Antenna with High Gain and Low Sidelobe Characteristics

    Takashi SHIMIZU  Tsukasa YONEYAMA  

     
    LETTER-Active Circuits & Antenna

      Vol:
    E88-C No:7
      Page(s):
    1385-1386

    A NRD guide fed dielectric lens antenna with high gain and low sidelobe characteristics is proposed for millimeter wave applications. The measured results showed very good performance at 60 GHz. It exhibited a gain of 24.9 dBi, 27 dB sidelobe level suppression.

81-100hit(228hit)