The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] dual-band(42hit)

1-20hit(42hit)

  • Design of a Dual-Band Load-Modulated Sequential Amplifier with Extended Back-off

    Minghui YOU  Guohua LIU  Zhiqun CHENG  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/06/07
      Vol:
    E106-C No:12
      Page(s):
    808-811

    This letter presents a dual-band load-modulated sequential amplifier (LMSA). The proposed amplifier changed the attenuator terminated at the isolation port of the four-port combiner of the traditional sequential power amplifier (SPA) architecture into a reactance modulation network (RMN) for load modulation. The impedance can be maintained pure resistance by designing RMN, thus realizing high efficiency and a good portion of the output power in the multiple bands. Compared to the dual-band Doherty power amplifier with a complex dual-band load modulation network (LMN), the proposed LMSA has advantages as maintaining high output power back-off (OBO) efficiency, wide bandwidth and simple construction. A 10-watt dual-band LMSA is simulated and measured in 1.7-1.9GHz and 2.4-2.6GHz with saturated efficiencies 61.2-69.9% and 54.4-70.8%, respectively. The corresponding 9dB OBO efficiency is 46.5-57.1% and 46.4-54.4%, respectively.

  • IMD Components Compensation Conditions for Dual-Band Feed-Forward Power Amplifier

    Yasunori SUZUKI  Hiroshi OKAZAKI  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/05/01
      Vol:
    E103-C No:10
      Page(s):
    434-444

    This paper presents analysis results of the intermodulation distortion (IMD) components compensation conditions for dual-band feed-forward power amplifier (FFPA) when inputting dual-band signals simultaneously. The signal cancellation loop and distortion cancellation loop of the dual-band FFPA have frequency selective adjustment paths which consist of filter and vector regulator. The filter selects the desired frequency component and suppresses the undesired frequency component in the desired frequency selective adjustment path. The vector regulators repeatedly adjust the amplitude and phase values of the composite components for the desired and suppressed undesired frequency components. In this configuration, the cancellation levels of the signal cancellation loop and distortion cancellation loop are depending on the amplitude and phase errors of the vector regulator. The analysis results show that the amplitude and phase errors of the desired frequency component almost become independent that of the undesired frequency component in a weak non-linearity condition, when the isolation between the desired band and the undesired band given by the filter is more than 40 dB. The amplitude errors of the desired frequency component are dependent on that of the undesired frequency component in a strong non-linear conditions when the isolation level sets as above. A 1-W-class signal cancellation loop and 20-W-class FFPA are fabricated for 1.7-GHz and 2.1-GHz bands simultaneous operation. The experimental results show that the analysis results are suitable in the experimental conditions. From these investigations, the analysis results can provide a commercially available dual-band FFPA. To our best knowledge, this is first analysis results for the dual-band FFPA.

  • Dual-Band Dual-Rectangular-Loop Circular Polarization Antenna for Global Navigation Satellite System Open Access

    Makoto SUMI  Jun-ichi TAKADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/06/25
      Vol:
    E102-B No:12
      Page(s):
    2243-2252

    This paper proposes a dual-band dual-rectangular-loop circular polarization antenna for Global Navigation Satellite Systems (GNSSs). The proposed antenna combines two large outer rectangular loops with two small inner loops. Each large outer loop is connected to its corresponding small inner rectangular loop. Each loop has gaps located symmetrically with respect to a feed point to produce Right Handed Circular Polarization (RHCP). The gap position and the shape of the rectangular loops are very important to adjust both the impedance matching and circular polarization characteristics. The proposed antenna offers dual-band Voltage Standing Wave Ratio (VSWR) and Axial Ratio (AR) frequency characteristics that include the L1 (1575.42 MHz) and L2 (1227.60 MHz) bands. The antenna gains exceed 8.7 dBi. Broad AR elevation patterns are obtained. These antenna characteristics are well suited to precise positioning.

  • A Dual-Band Decoupling Method of 2 Elements MIMO Antennas by Using a Short Stub and a Branch Element Open Access

    Takuya MIYASAKA  Hiroshi SATO  Masaharu TAKAHASHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1763-1770

    In recent years, MIMO technology which uses multiple antennas has been introduced to the mobile terminal to increase communication capacity per unit frequency. However, if MIMO antennas are put closely, a strong mutual coupling occurred. Moreover, CA which uses multiple frequencies is also utilized to improve communication speed. Therefore, reducing mutual coupling in multiple frequencies is required. In this paper, we propose a dual-band decoupling method by using a short stub and a branch element and confirmed that the proposed model performed decoupling, increased radiation efficiency.

  • Design of Dual-Band SHF BPF with Lower Band Reconfigurability and Direct Parallel-Connected Configuration

    Yuki KADA  Yasushi YAMAO  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    775-783

    For more flexible and efficient use of radio spectrum, reconfigurable RF devices have important roles in the future wireless systems. In 5G mobile communications, concurrent multi-band operation using new SHF bands is considered. This paper presents a new configuration of dual-band SHF BPF consisting of a low SHF three-bit reconfigurable BPF and a high SHF BPF. The proposed dual-band BPF employs direct parallel connection without additional divider/combiner to reduce circuit elements and simplify the BPF. In order to obtain a good isolation between two passbands while achieving a wide center frequency range in the low SHF BPF, input/output impedances and external Qs of BPFs are analyzed and feedbacked to the design. A high SHF BPF design method with tapped transmission line resonators and lumped-element coupling is also presented to make the BPF compact. Two types of prototypes; all inductor-coupled dual-band BPF and C-L-C coupled dual-band BPF were designed and fabricated. Both prototypes have low SHF reconfigurable center frequency range from 3.5 to 5 GHz as well as high SHF center frequency of 8.5 GHz with insertion loss below 2.0 dB.

  • Asymmetrical Waveform Compensation for Concurrent Dual-Band 1-bit Band-Pass Delta-Sigma Modulator with a Quasi-Elliptic Filter

    Takashi MAEHATA  Suguru KAMEDA  Noriharu SUEMATSU  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2017/12/13
      Vol:
    E101-B No:6
      Page(s):
    1352-1358

    The 1-bit band-pass delta-sigma modulator (BP-DSM) achieves high resolution if it uses an oversampling technique. This method can generate concurrent dual-band RF signals from a digitally modulated signal using a 1-bit digital pulse train. It was previously reported that the adjacent channel leakage ratio (ACLR) deteriorates owing to the asymmetrical waveform created by the pulse transition mismatch error of the rising and falling waveforms in the time domain and that the ACLR can be improved by distortion compensation. However, the reported distortion compensation method can only be performed for single-band transmission, and it fails to support multi-band transmission because the asymmetrical waveform compensated signal extends over a wide frequency range and is itself a harmful distortion outside the target band. Unfortunately, the increase of out-of-band power causes the BP-DSM unstable. We therefore propose a distortion compensator for a concurrent dual-band 1-bit BP-DSM that consists of a noise transfer function with a quasi-elliptic filter that can control the out-of-band gain frequency response against out-of-band oscillation. We demonstrate that dual-band LTE signals, each with 40MHz (2×20MHz) bandwidth, at 1.5 and 3.0GHz, can be compensated concurrently for spurious distortion under various combinations of rising and falling times and ACLR of up to 48dB, each with 120MHz bandwidth, including the double sided adjacent channels and next adjacent channels, is achieved.

  • Tunable Dual-Frequency Immittance Inverters on Dual-Composite Right/Left-Handed Transmission Lines (D-CRLH TL) with Variable Capacitors

    Dmitry KHOLODNYAK  Evgenia ZAMESHAEVA  Viacheslav TURGALIEV  Evgenii VOROBEV  

     
    PAPER

      Vol:
    E99-C No:10
      Page(s):
    1113-1121

    Design of lumped-element immittance inverters which support dual-frequency operation and tuning of both operational frequencies is presented. Unique properties of the dual-composite right/left-handed transmission lines (D-CRLH TL) give an opportunity to design immittance inverters with two non-multiple operational frequencies and a stop band between them. Replacement of capacitors of D-CRLH TL unit cells with variable ones enables inverter tunability. Tunability analysis of such immittance inverters is given. It is shown that a tuning range of the operational frequencies is limited by a tolerable variation of the inverter parameter. The design concept is verified by results of electromagnetic simulation and measured frequency characteristics of fixed (non-tunable) as well as tunable dual-frequency immittance inverters and dual-band filters using the inverters.

  • Novel Design of Dual-Band Reconfigurable Dipole Antenna Using Lumped and Distributed Elements

    Shoichi ONODERA  Ryo ISHIKAWA  Akira SAITOU  Kazuhiko HONJO  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:7
      Page(s):
    1550-1557

    A frequency-reconfigurable dipole antenna, whose dual resonant frequencies are independently controlled, is introduced. The antenna's conductor consists of radiating conductors, lumped and distributed elements, and varactors. To design the antenna, current distribution, input impedance, and radiation power including higher-order modes, are analyzed for a narrow-angle sectorial antenna embedded with passive elements. To derive the formulae used, radiation power is analyzed in two ways: using Chu's equivalent circuit and the multipole expansion method. Numerical estimations of electrically small antennas show that dual-band antennas are feasible. The dual resonant frequencies are controlled with the embedded series and shunt inductors. A dual-band antenna is fabricated, and measured input impedances agree well with the calculated data. With the configuration, an electrically small 2.5-/5-GHz dual-band reconfig-urable antenna is designed and fabricated, where the reactance values for the series and shunt inductors are controlled with varactors, each connected in series to the inductors. Varying the voltages applied to the varactors varies the measured upper and lower resonant frequencies between 2.6 and 2.9GHz and between 5.1 and 5.3GHz, where the other resonant frequency is kept almost identical. Measured radiation patterns on the H-plane are almost omni-directional for both bands.

  • A Compact Millimeter-Wave Dual-Band Bandpass Filter Using Substrate-Integrated Waveguide (SIW) Dual-Mode Cavities

    Kaida DONG  Jingyan MO  Yuhong HE  Zhewang MA  Xuexia YANG  

     
    PAPER

      Vol:
    E99-C No:7
      Page(s):
    761-765

    A compact millimeter-wave three-pole dual-band bandpass filter (BPF) by using substrate-integrated waveguide (SIW) dual-mode cavities is developed in this paper. The proposed filter consists of three SIW dual-mode cavities, in which the TE201 and TE102 modes are used to form two passbands. The center frequencies of the two passbands can be readily changed by varying the lengths and/or widths of the SIW cavities. Meanwhile three transmission zeros are produced with appropriate design of the input and output of the SIW cavities, which increase significantly the isolation between the two passbands and their roll-off rate of attenuations. The dual-band BPF filter is designed, fabricated and measured. The measured center frequencies of the two passbands are 26.75GHz and 31.55GHz, respectively. The 3dB-passbands are 26.35-27.15GHz (3%) and 31.29-31.81GHz (1.6%), respectively, with maximum insertion loss of 2.64dB and 4.2dB, respectively, and return loss larger than 12dB in both passbands. A good agreement between the simulated and measured filter characteristics is obtained.

  • Concurrent Multi-Band Mixer with Independent and Linear Gain Control

    Takana KAHO  Yo YAMAGUCHI  Hiroyuki SHIBA  Tadao NAKAGAWA  Kazuhiro UEHARA  Kiyomichi ARAKI  

     
    PAPER-Active Circuits/Devices/Monolithic Microwave Integrated Circuits

      Vol:
    E98-C No:7
      Page(s):
    659-668

    Novel multi-band mixers that can receive multiple band signals concurrently are proposed and evaluated. The mixers achieve independent gain control through novel relative power control method of the multiple local oscillator (LO) signals. Linear control is also achieved through multiple LO signal input with total LO power control. Theoretical analysis shows that odd-order nonlinearity components of the multiple LO signals support linear conversion gain control. Dual- and triple-band tests are conducted using typical three MOSFET mixers fabricated by a 0.25 µm SiGe BiCMOS process. Measurements confirm over 40 dB independent control of conversion gain, linear control achieved through LO input power control. The proposed mixers have high input linearity with a 5 dBm output third intercept point. A method is also proposed to reduce interference caused by mixing between multiple LO signals.

  • Dual-Band Sensor Network for Accurate Device-Free Localization in Indoor Environment with WiFi Interference

    Manyi WANG  Zhonglei WANG  Enjie DING  Yun YANG  

     
    PAPER-Network Computing and Applications

      Pubricized:
    2014/12/11
      Vol:
    E98-D No:3
      Page(s):
    596-606

    Radio Frequency based Device-Free Localization (RFDFL) is an emerging localization technique without requirements of attaching any electronic device to a target. The target can be localized by means of measuring the shadowing of received signal strength caused by the target. However, the accuracy of RFDFL deteriorates seriously in environment with WiFi interference. State-of-the-art methods do not efficiently solve this problem. In this paper, we propose a dual-band method to improve the accuracy of RFDFL in environment without/with severe WiFi interference. We introduce an algorithm of fusing dual-band images in order to obtain an enhanced image inferring more precise location and propose a timestamp-based synchronization method to associate the dual-band images to ensure their one-one correspondence. With real-world experiments, we show that our method outperforms traditional single-band localization methods and improves the localization accuracy by up to 40.4% in real indoor environment with high WiFi interference.

  • Experimental Validation of Digital Pre-distortion Technique for Dual-band Dual-signal Amplification by Single Feedback Architecture Employing Dual-band Mixer

    Ikuma ANDO  Gia Khanh TRAN  Kiyomichi ARAKI  Takayuki YAMADA  Takana KAHO  Yo YAMAGUCHI  Tadao NAKAGAWA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E98-C No:3
      Page(s):
    242-251

    In this paper we describe and experimentally validate a dual-band digital predistortion (DPD) model we propose that takes account of the intermodulation and harmonic distortion produced when the center frequencies of input bands have a harmonic relationship. We also describe and experimentally validate our proposed novel dual-band power amplifier (PA) linearization architecture consisting of a single feedback loop employing a dual-band mixer. Experiment results show that the DPD linearization the proposed model provides can compensate for intermodulation and harmonic distortion in a way that the conventional two-dimensional (2-D) DPD approach cannot. The proposed feedback architecture should make it possible to simplify analog-to-digital converter (ADC) design and eliminate the time lag between different feedback paths.

  • Realization of a Planar Dual-Band Fork Three-Way Power Divider Using an Impedance Scale Factor

    Iwata SAKAGAMI  Minoru TAHARA  Xiaolong WANG  

     
    PAPER

      Vol:
    E97-C No:10
      Page(s):
    948-956

    Realization of a planar dual-band fork three-way power divider (PDBF3PD) with Cheng's equivalent structure is discussed. The Cheng's structure consists of two open-circuited stubs and a transmission line, and the characteristic impedances tend to be high. As a result, the realizable range of frequency ratios of upper frequency to lower frequency is limited in a narrow area. In this paper, an impedance scale factor is proposed to transform characteristic impedances into a realizable range and to facilitate the design of PDBF3PDs. Theoretical considerations are verified using a simulator of ADS2008U and by an experiment.

  • Broadside Coupling High-Temperature Superconducting Dual-Band Bandpass Filter

    Yuta TAKAGI  Kei SATOH  Daisuke KOIZUMI  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E96-C No:8
      Page(s):
    1033-1040

    This paper proposes a novel high-temperature superconducting dual-band bandpass filter (HTS-DBPF), that employs a broadside coupling structure, in which quarter-wavelength resonators are formed on opposite sides of each substrate. This structure provides a dual-band operation of the BPF and flexibility, in the sense of having a wide range in selecting two center passband frequencies of the HTS-DBPF. This paper employs the ratio of the lower and higher center passband frequencies, α, as a criterion for evaluating the flexibility. The obtained α ranges are from 1 to 4.7, which are the widest for DBPFs for mobile communications applications, to the best knowledge of the authors. This paper presents a 2.4-/2.9-GHz band HTS-DBPF, as an experimental example, using a YBCO film deposited on an MgO substrate. The measured frequency responses of the HTS-DBPF agree with the electromagnetic simulated results. Measurement and simulation results confirm that the proposed filter architecture is effective in configuring a DBPF that can set each center passband frequency widely.

  • A 120 GHz/140 GHz Dual-Channel OOK Receiver Using 65 nm CMOS Technology

    Ryuichi FUJIMOTO  Mizuki MOTOYOSHI  Kyoya TAKANO  Minoru FUJISHIMA  

     
    PAPER

      Vol:
    E96-A No:2
      Page(s):
    486-493

    The design and measured results of a 120 GHz/140 GHz dual-channel OOK (ON-OFF Keying) receiver are presented in this paper. Because a signal with very wide frequency width is difficult to process in a single-channel receiver, a dual-channel configuration with channel selection is adopted in the proposed receiver. The proposed receiver is fabricated using 65 nm CMOS technology. The measured data rate of 3.0 and 3.6 Gbps, minimum sensitivity of -25.6 and -27.1 dBm, communication distance of 0.30 and 0.38 m are achieved in the 120- and 140-GHz receiver, respectively. The correct channel selection is achieved in the 120-GHz receiver. These results indicate the possibility of the CMOS multiband receiver operating at over 100 GHz for low-power high-speed proximity wireless communication systems.

  • Design of a Dual-Band Dual-Polarization Array Antenna with Improved Bandwidth for AMRFC Radar Application

    Youngki LEE  Deukhyeon GA  Daesung PARK  Seokgon LEE  Jaehoon CHOI  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:1
      Page(s):
    182-189

    A dual-band dual-polarization array antenna with improved bandwidth for an advanced multi-function radio function concept (AMRFC) radar application is proposed. To improve the S-band impedance bandwidth, the proposed antenna uses modified coupling feed patch. The measured bandwidth of the prototype array is 19.8% and 25.7% for the S- and X-band, respectively. The isolation between the two orthogonal polarizations is higher than 15 dB and cross-polarization level is less than -17 dB for both S- and X-bands.

  • L-Band SiGe HBT Frequency-Tunable Dual-Bandpass or Dual-Bandstop Differential Amplifiers Using Varactor-Loaded Series and Parallel LC Resonators

    Kazuyoshi SAKAMOTO  Yasushi ITOH  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E95-C No:12
      Page(s):
    1839-1845

    L-band SiGe HBT frequency-tunable differential amplifiers with dual-bandpass or dual-bandstop responses have been developed for the next generation adaptive and/or reconfigurable wireless radios. Varactor-loaded dual-band resonators comprised of series and parallel LC circuits are employed in the output circuit of differential amplifiers for realizing dual-bandpass responses as well as the series feedback circuit for dual-bandstop responses. The varactor-loaded series and parallel LC resonator can provide a wider frequency separation between dual-band frequencies than the stacked LC resonator. With the use of the varactor-loaded dual-band resonator in the design of the low-noise SiGe HBT differential amplifier with dual-bandpass responses, the lower-band frequency can be varied from 0.58 to 0.77 GHz with a fixed upper-band frequency of 1.54 GHz. Meanwhile, the upper-band frequency can be varied from 1.1 to 1.5 GHz for a fixed lower-band frequency of 0.57 GHz. The dual-band gain was 6.4 to 13.3 dB over the whole frequency band. In addition, with the use of the varactor-loaded dual-band resonator in the design of the low-noise differential amplifier with dual-bandstop responses, the lower bandstop frequency can be varied from 0.38 to 0.68 GHz with an upper bandstop frequency from 1.05 to 1.12 GHz. Meanwhile, the upper bandstop frequency can be varied from 0.69 to 1.02 GHz for a lower bandstop frequency of 0.38 GHz. The maximal dual-band rejection of gain was 14.4 dB. The varactor-loaded dual-band resonator presented in this paper is expected to greatly contribute to realizing the next generation adaptive and/or reconfigurable wireless transceivers.

  • Design of Multilayer Dual-Band BPF and Diplexer with Zeros Implantation Using Suspended Stripline

    Min-Hua HO  Wei-Hong HSU  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1195-1202

    In this paper, a dual-band bandpass filter (BPF) of multilayer suspended stripline (SSL) structure and an SSL diplexer composed of a low-pass filter (LPF) and a high-pass filter (HPF) are proposed. Bandstop structure creating transmission zeros is adopted in the BPF and diplexer, enhancing the signal selectivity of the former and increasing the isolation between the diverting ports of the latter. The dual-band BPF possesses two distinct bandpass structures and a bandstop circuit, all laid on different metallic layers. The metallic layers together with the supporting substrates are vertically stacked up to save the circuit dimension. The LPF and HPF used in the diplexer structure are designed by a quasi-lumped approach, which the LC lumped-elements circuit models are developed to analyze filters' characteristics and to emulate their frequency responses. Half-wavelength resonating slots are employed in the diplexer's structure to increase the isolation between its two signal diverting ports. Experiments are conducted to verify the multilayer dual-band BPF and the diplexer design. Agreements are observed between the simulation and the measurement.

  • Dual-Band Magnetic Loop Antenna with Monopolar Radiation Using Slot-Loaded Composite Right/Left-Handed Structures

    Seongmin PYO  Min-Jae LEE  Kyoung-Joo LEE  Young-Sik KIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E95-B No:2
      Page(s):
    627-630

    A novel dual-band magnetic loop antenna is proposed using slot-loaded composite right/left-handed (SL-CRLH) structures. Since each radiating element consists of a symmetrically-array of unit-cells, a dual-band magnetic loop source is obtained with unchanged beam patterns. Simulations and measurements show its good radiation performance with monopole-like radiation patterns in both operating bands.

  • A Novel Dual-Band Bagley Polygon Power Divider with 2-D Configuration

    Xin LIU  Cuiping YU  Yuanan LIU  Shulan LI  Fan WU  Yongle WU  

     
    PAPER-Passive Devices and Circuits

      Vol:
    E94-C No:10
      Page(s):
    1594-1600

    In this paper, a novel design of planar dual-band multi-way lossless power dividers (PDs), namely Bagley Polygon PDs, is presented. The proposed PDs use Π-type dual-band transformers as basic elements, whose design formulas are analyzed and simplified to a concise form. The equivalent circuit of the dual-band Bagley Polygon PD is established, based on which design equations are derived mathematically. After that, the design procedure is demonstrated, and special cases are discussed. To verify the validity of the proposed design, 3-way and 5-way examples are simulated and fabricated at two IMT-Advanced bands of 1.8 GHz and 3.5 GHz, then simulation and measurement results are provided. The presented PDs have good performances on the bandwidths and phase shifts. Furthermore, the planar configuration leads to convenient design procedure and easy fabrication.

1-20hit(42hit)