The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] electrochemical(11hit)

1-11hit
  • Peptide Addition Effect of the Active Layer Precursor Solution Containing Poor Solvent on Photoelectrochemical Characteristics of the Thin Film Organic Photovoltaic Cells

    Hirokazu YAMANE  Shinji SHINDO  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    192-195

    The thin film organic photovoltaic cells (OPVs) using organic semiconductors are inferior to oxgen-resistance and water-resistance, and the OPVs have a drawback that the photoelectric conversion efficiency (η) is low. For high efficiency of the OPVs, control of bulk heterojunction (BHJ) structure in the active layer is demanded. Therefore, it is thought that we can control the BHJ structure easily if we can bring a change in the aggregated structure and the crystallinity of the BHJ structure by introducing the third component that is different from the organic semiconductor into the activity layer. In this study, we introduced peptide consisting of phenylalanine of 2 molecules into the active layer prepared by poor solvent addition effect for the organic thin film solar cells and intended to try high efficiency of the organic thin film solar cells and examined the electrochemistry characteristic of the cells.

  • A Multi-Channel Electrochemical Measurement System for Biomolecular Detection

    Wei-Chiun LIU  Bin-Da LIU  Chia-Ling WEI  

     
    PAPER-Electronic Circuits

      Vol:
    E99-C No:11
      Page(s):
    1295-1303

    A modularized, low-cost, and non-invasive electrochemical examination platform is proposed in this work. Melatonin has been found to be a possible significant indicator molecule in the detection of breast cancer. 3-hydroxyanthranilic acid and nuclear matrix protein 22 can be used as a significant index for potential bladder cancer risks. The proposed system was verified by measuring the melatonin, 3-hydroxyanthranilic acid and nuclear matrix protein 22. Cyclic voltammetry and molecularly imprinted polymers were used in the experiments. Screen-printed electrodes were coated with a film imprinted with target molecules. The measurement results of the proposed system were compared with those of a commercial potentiostat. The two sets of results were very similar. Moreover, the proposed system can be expanded to a four-channel system, which can perform four measurements simultaneously. The proposed system also provides convenient graphical user interface for real-time monitoring and records the information of the redox reactions.

  • Well-Shaped Microelectrode Array Structure for High-Density CMOS Amperometric Electrochemical Sensor Array

    Kiichi NIITSU  Tsuyoshi KUNO  Masayuki TAKIHI  Kazuo NAKAZATO  

     
    BRIEF PAPER

      Vol:
    E99-C No:6
      Page(s):
    663-666

    In this study, a well-shaped microelectrode array (MEA) for fabricating a high-density complementary metal-oxide semiconductor amperometric electrochemical sensor array was designed and verified. By integrating an auxiliary electrode with the well-shaped structure of the MEA, the footprint was reduced and high density and high resolution were also achieved. The results of three-dimensional electrochemical simulations confirmed the effectiveness of the proposed MEA structure and possibility of increasing the density to four times than that achieved by the conventional two-dimensional structure.

  • Improvement of Turn-On Voltage by Thermal Annealing of a Tungsten Single Emitter Coated with a Carbonaceous Film Deposited in Liquid Methanol

    Tomomi YOSHIMOTO  Tatsuo IWATA  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E94-C No:12
      Page(s):
    1913-1916

    A carbonaceous thin film was deposited on a tungsten single emitter by electrolysis of liquid methanol. The carbonaceous single emitter was thermally treated under vacuum conditions, and changes in its field emission characteristics were examined. The field emission characteristics obeyed the Fowler–Nordheim relationship for all annealing temperatures. The turn-on voltage decreased from 1640 V to 790 V with annealing up to 1373 K.

  • Conducting Polymer Based Nucleic Acid Sensor for Environment Monitoring

    Bansi Dhar MALHOTRA  Nirmal PRABHAKAR  Pratima R. SOLANKI  

     
    INVITED PAPER

      Vol:
    E91-C No:12
      Page(s):
    1889-1893

    Nucleic acid sensor based on polyaniline has been fabricated by covalently immobilizing double stranded calf thymus (dsCT) DNA onto perchlorate (ClO- 4) doped polyaniline (PANI) film deposited onto indium-tin-oxide (ITO) glass plate using 1-(3-(dimethylamino) propyl)-3-ethylcarbodiimide hydrochloride (EDC)/N-hydroxyl succinimide (NHS) chemistry. These dsCT-DNA-PANI/ITO and PANI/ITO electrodes have been characterized using square wave voltammetry, electrochemical impedance, and Fourier-transform-infra-red (FTIR) measurements. This disposable dsCT-DNA-PANI/ITO bioelectrode is stable for about four months, can be used to detect arsenic trioxide (0.1 ppm) in 30 s.

  • Electrochromic Thin Film of Water-Dispersible Prussian-Blue Nanoparticles

    Ayako OMURA  Hirofumi SHIOZAKI  Shigeo HARA  Tohru KAWAMOTO  Akihito GOTOH  Masahito KURIHARA  Masaomi SAKAMOTO  Hisashi TANAKA  

     
    LETTER-Materials & Devices

      Vol:
    E91-C No:12
      Page(s):
    1887-1888

    The insoluble Prussian-blue (PB) pigment becomes possible to disperse in aqueous solution by covering their surfaces with ferrocyanide anions. The thin film fabricated with these water-dispersible PB nanoparticles shows evident electrochromic color changes between +0.8 V to -0.4 V on an ITO substrate. The mass change of the thin film during an electrochemical reaction is measured by means of electrochemical quartz crystal microbalance (EQCM). According to the EQCM analysis, the filling rate of water-dispersible PB nanoparticles in the film is 37.7% as compared with an assumed perfect crystal PB film.

  • Solid-Electrolyte Nanometer Switch

    Naoki BANNO  Toshitsugu SAKAMOTO  Noriyuki IGUCHI  Hisao KAWAURA  Shunichi KAERIYAMA  Masayuki MIZUNO  Kozuya TERABE  Tsuyoshi HASEGAWA  Masakazu AONO  

     
    INVITED PAPER

      Vol:
    E89-C No:11
      Page(s):
    1492-1498

    We have developed a solid-electrolyte nonvolatile switch (here we refer as NanoBridge) with a low ON resistance and its small size. When we use a NanoBridge to switch elements in a programmable logic device, the chip size (or die cost) can be reduced and performance (speed and power consumption) can be enhanced. Developing this application required solving a couple of problems. First, the switching voltage of the NanoBridge (0.3 V) needed to be larger than the operating voltage of the logic circuit (>1 V). Second, the programming current (>1 mA) needed to be suppressed to avoid large power consumption. We demonstrate how the Nanobridge enhances the switching voltage and reduces the programming current.

  • A Combinatorial Approach to Investigation of Schottky Diodes Based on Electrochemically Polymerized Conjugated Polymer

    Kazuya TADA  Takaya UEYAMADA  Mitsuyoshi ONODA  

     
    PAPER-Electrochemical of Organic Materials

      Vol:
    E87-C No:12
      Page(s):
    2071-2075

    In this paper, we have proposed to apply a combinatorial approach to investigate the Schottky diode based on electrochemically polymerized conjugated polymer. The concept of combinatorial approach was emerged in the biochemical field and lately used in the materials science to screen a number of experimental conditions efficiently. Some tips for designing the polymerization bath suitable for our purpose, such as the way to suppress the interference of polymerization currents, have been described. In the case of Schottky diodes based on poly (3-methylthiophene), the system chosen to test our idea, the effects of polymer thickness and the supporting salt on the device characteristics have been surveyed clearly and rapidly. The map or library of the relationship between the polymerization condition and device characteristic may be useful to tune the device characteristics as desired. Our preliminary result has shown that the combinatorial approach proposed here can be a powerful tool to investigate the conjugated polymer devices by electrochemical polymerization such as electrochromic devices.

  • Analysis of Adsorbing Molecules on Pt Surface Using Electrochemical Impedance Spectroscopy

    Kenshi HAYASHI  Kosuke HAYAMA  Kumi MASUNAGA  Wataru FUTAGAMI  Seung-Woo LEE  Kiyoshi TOKO  

     
    PAPER-Bioelectronic and Sensor

      Vol:
    E87-C No:12
      Page(s):
    2087-2092

    Chemical sensor which can be used for a multi-purpose chemical measurement to detect various chemical substances with a small number of a sensor array was investigated. It was confirmed that chemical compounds adsorbed strongly and irreversibly on a platinum surface using conventional electrochemical methods and an instrumental surface analysis. The adsorbates were also analyzed by means of an electrochemical impedance spectroscopy under dynamic potential scan; measured impedance reflects CPE (constant phase element) properties of the electrode surface. The method provides a convenient technique for the surface analysis of adsorbing chemicals. The CPE response profile was modified through chemical adsorption/desorption and the interaction between the polarized surface and chemical substances. Consequently, various profiles depending on chemical substances were obtained and it had quantitative and qualitative information about chemicals interacting with the surface. The present method which does not require a specific electrochemical reaction can be applied for multi-purpose chemical sensors and also simple chemical analyses.

  • Anisotropic Bending Machine Using Conducting Polypyrrole

    Mitsuyoshi ONODA  Kazuya TADA  

     
    PAPER-Nano-interface Controlled Electronic Devices

      Vol:
    E87-C No:2
      Page(s):
    128-135

    Recent new technologies of electro-mechanical conversion devices have been reviewed. Especially, the electrochemical properties of anisotropic actuators using polypyrrole have been reviewed in detailed and the realization of the bimorph (or bending beam) structure without artificial adhesive agent is introduced.

  • Control of Linear Pattern of Conducting Polymer Prepared Electrochemically

    Masaharu FUJII  Haruo IHORI  Kiyomitsu ARII  

     
    PAPER-Organic-neuro Systems

      Vol:
    E87-C No:2
      Page(s):
    174-178

    Two-dimensional (2D) patterns of a conducting polymer have been prepared electrochemically. The patterns depend on the conditions of electrochemical polymerization. Concerning the polymerization reaction and the growth process of conducting polymers, it is found that the growth rate and solution flow during the generation of the 2D pattern are important factors for controlling the 2D pattern. The linear pattern and the simple branching pattern were successfully fabricated by optimizing the deposition conditions. The successful fabrication of the branching pattern indicates the processability of linear conducting polymers for network formation.