The search functionality is under construction.

Keyword Search Result

[Keyword] energy efficiency(107hit)

1-20hit(107hit)

  • An Adaptive Energy-Efficient Uneven Clustering Routing Protocol for WSNs

    Mingyu LI  Jihang YIN  Yonggang XU  Gang HUA  Nian XU  

     
    PAPER-Network

      Vol:
    E107-B No:2
      Page(s):
    296-308

    Aiming at the problem of “energy hole” caused by random distribution of nodes in large-scale wireless sensor networks (WSNs), this paper proposes an adaptive energy-efficient balanced uneven clustering routing protocol (AEBUC) for WSNs. The competition radius is adaptively adjusted based on the node density and the distance from candidate cluster head (CH) to base station (BS) to achieve scale-controlled adaptive optimal clustering; in candidate CHs, the energy relative density and candidate CH relative density are comprehensively considered to achieve dynamic CH selection. In the inter-cluster communication, based on the principle of energy balance, the relay communication cost function is established and combined with the minimum spanning tree method to realize the optimized inter-cluster multi-hop routing, forming an efficient communication routing tree. The experimental results show that the protocol effectively saves network energy, significantly extends network lifetime, and better solves the “energy hole” problem.

  • Energy Efficiency Based Multi Service Heterogeneous Access Network Selection Algorithm

    Meng-Yuan HE  Ling-Yun JIANG  

     
    PAPER-Network System

      Pubricized:
    2023/04/24
      Vol:
    E106-B No:10
      Page(s):
    881-890

    In the current heterogeneous wireless communication system, the sharp rise in energy consumption and the emergence of new service types pose great challenges to nowadays radio access network selection algorithms which do not take care of these new trends. So the proposed energy efficiency based multi-service heterogeneous access network selection algorithm-ESRS (Energy Saving Radio access network Selection) is intended to reduce the energy consumption caused by the traffic in the mobile network system composed of Base Stations (BSs) and Access Points (APs). This algorithm models the access network selection problem as a Multiple-Attribute Decision-Making (MADM) problem. To solve this problem, lots of methods are combined, including analytic Hierarchy Process (AHP), weighted grey relational analysis (GRA), entropy theory, simple additive weight (SAW), and utility function theory. There are two main steps in this algorithm. At first, the proposed algorithm gets the result of the user QoS of each network by dealing with the related QoS parameters, in which entropy theory and AHP are used to determine the QoS comprehensive weight, and the SAW is used to get each network's QoS. In addition to user QoS, parameters including user throughput, energy consumption utility and cost utility are also calculated in this step. In the second step, the fuzzy theory is used to define the weight of decision attributes, and weighted grey relational analysis (GRA) is used to calculate the network score, which determines the final choice. Because the fuzzy weight has a preference for the low energy consumption, the energy consumption of the traffic will be saved by choosing the network with the least energy consumption as much as possible. The simulation parts compared the performance of ESRS, ABE and MSNS algorithms. The numerical results show that ESRS algorithm can select the appropriate network based on the service demands and network parameters. Besides, it can effectively reduce the system energy consumption and overall cost while still maintaining a high overall QoS value and a high system throughput, when compared with the other two algorithms.

  • Hybrid, Asymmetric and Reconfigurable Input Unit Designs for Energy-Efficient On-Chip Networks

    Xiaoman LIU  Yujie GAO  Yuan HE  Xiaohan YUE  Haiyan JIANG  Xibo WANG  

     
    PAPER

      Pubricized:
    2023/04/10
      Vol:
    E106-C No:10
      Page(s):
    570-579

    The complexity and scale of Networks-on-Chip (NoCs) are growing as more processing elements and memory devices are implemented on chips. However, under strict power budgets, it is also critical to lower the power consumption of NoCs for the sake of energy efficiency. In this paper, we therefore present three novel input unit designs for on-chip routers attempting to shrink their power consumption while still conserving the network performance. The key idea behind our designs is to organize buffers in the input units with characteristics of the network traffic in mind; as in our observations, only a small portion of the network traffic are long packets (composed of multiple flits), which means, it is fair to implement hybrid, asymmetric and reconfigurable buffers so that they are mainly targeting at short packets (only having a single flit), hence the smaller power consumption and area overhead. Evaluations show that our hybrid, asymmetric and reconfigurable input unit designs can achieve an average reduction of energy consumption per flit by 45%, 52.3% and 56.2% under 93.6% (for hybrid designs) and 66.3% (for asymmetric and reconfigurable designs) of the original router area, respectively. Meanwhile, we only observe minor degradation in network latency (ranging from 18.4% to 1.5%, on average) with our proposals.

  • RT-libSGM: FPGA-Oriented Real-Time Stereo Matching System with High Scalability

    Kaijie WEI  Yuki KUNO  Masatoshi ARAI  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2022/12/07
      Vol:
    E106-D No:3
      Page(s):
    337-348

    Stereo depth estimation has become an attractive topic in the computer vision field. Although various algorithms strive to optimize the speed and the precision of estimation, the energy cost of a system is also an essential metric for an embedded system. Among these various algorithms, Semi-Global Matching (SGM) has been a popular choice for some real-world applications because of its accuracy-and-speed balance. However, its power consumption makes it difficult to be applied to an embedded system. Thus, we propose a robust stereo matching system, RT-libSGM, working on the Xilinx Field-Programmable Gate Array (FPGA) platforms. The dedicated design of each module optimizes the speed of the entire system while ensuring the flexibility of the system structure. Through an evaluation on a Zynq FPGA board called M-KUBOS, RT-libSGM achieves state-of-the-art performance with lower power consumption. Compared with the benchmark design (libSGM) working on the Tegra X2 GPU, RT-libSGM runs more than 2× faster at a much lower energy cost.

  • Energy Efficiency Optimization for MISO-NOMA SWIPT System with Heterogeneous QoS Requirements

    Feng LIU  Xianlong CHENG  Conggai LI  Yanli XU  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2022/08/18
      Vol:
    E106-A No:2
      Page(s):
    159-163

    This letter solves the energy efficiency optimization problem for the simultaneous wireless information and power transfer (SWIPT) systems with non-orthogonal multiple access (NOMA), multiple input single output (MISO) and power-splitting structures, where each user may have different individual quality of service (QoS) requirements about information and energy. Nonlinear energy harvesting model is used. Alternate optimization approach is adopted to find the solution, which shows a fast convergence behavior. Simulation results show the proposed scheme has higher energy efficiency than existing dual-layer iteration and throughput maximization methods.

  • A Conflict-Aware Capacity Control Mechanism for Deep Cache Hierarchy

    Jiaheng LIU  Ryusuke EGAWA  Hiroyuki TAKIZAWA  

     
    PAPER-Computer System

      Pubricized:
    2022/03/09
      Vol:
    E105-D No:6
      Page(s):
    1150-1163

    As the number of cores on a processor increases, cache hierarchies contain more cache levels and a larger last level cache (LLC). Thus, the power and energy consumption of the cache hierarchy becomes non-negligible. Meanwhile, because the cache usage behaviors of individual applications can be different, it is possible to achieve higher energy efficiency of the computing system by determining the appropriate cache configurations for individual applications. This paper proposes a cache control mechanism to improve energy efficiency by adjusting a cache hierarchy to each application. Our mechanism first bypasses and disables a less-significant cache level, then partially disables the LLC, and finally adjusts the associativity if it suffers from a large number of conflict misses. The mechanism can achieve significant energy saving at the sacrifice of small performance degradation. The evaluation results show that our mechanism improves energy efficiency by 23.9% and 7.0% on average over the baseline and the cache-level bypassing mechanisms, respectively. In addition, even if the LLC resource contention occurs, the proposed mechanism is still effective for improving energy efficiency.

  • Markov-Chain Analysis Model based Active Period Adaptation Scheme for IEEE 802.15.4 Network

    Ryota HORIUCHI  Kohei TOMITA  Nobuyoshi KOMURO  

     
    PAPER

      Pubricized:
    2021/10/22
      Vol:
    E105-A No:5
      Page(s):
    770-777

    Energy efficiency is one of the critical issues for Wireless Sensor Networks (WSN). IEEE 802.15.4 beacon-enabled MAC protocol achieves low energy consumption by having periodical inactive portions, where nodes run in low power. However, IEEE 802.15.4 beacon-enabled protocol cannot respond to dynamic changes in the number of sensor nodes and data rates in WSN because its duty cycle is fixed and immutable. In this paper, we propose a dynamic superframe duration adaptation scheme based on the Markov chain-based analysis methods for IEEE 802.15.4 beacon-enabled protocol. The proposed methods are flexible enough to accommodate changes in the number of sensor nodes and differences in data rates in WSNs while maintaining low latency and low energy consumption despite slight degradation in packet delivery ratio.

  • Scaling Law of Energy Efficiency in Intelligent Reflecting Surface Enabled Internet of Things Networks

    Juan ZHAO  Wei-Ping ZHU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/09/29
      Vol:
    E105-A No:4
      Page(s):
    739-742

    The energy efficiency of intelligent reflecting surface (IRS) enabled internet of things (IoT) networks is studied in this letter. The energy efficiency is mathematically expressed, respectively, as the number of reflecting elements and the spectral efficiency of the network and is shown to scale in the logarithm of the reflecting elements number in the high regime of transmit power from source node. Furthermore, it is revealed that the energy efficiency scales linearly over the spectral efficiency in the high regime of transmit power, in contrast to conventional studies on energy and spectral efficiency trade-offs in the non-IRS wireless IoT networks. Numerical simulations are carried out to verify the derived results for the IRS enabled IoT networks.

  • An Energy-Efficient Defense against Message Flooding Attacks in Delay Tolerant Networks

    Hiromu ASAHINA  Keisuke ARAI  Shuichiro HARUTA  P. Takis MATHIOPOULOS  Iwao SASASE  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2020/10/06
      Vol:
    E104-B No:4
      Page(s):
    348-359

    Delay Tolerant Networks (DTNs) are vulnerable to message flooding attacks in which a very large number of malicious messages are sent so that network resources are depleted. To address this problem, previous studies mainly focused on constraining the number of messages that nodes can generate per time slot by allowing nodes to monitor the other nodes' communication history. Since the adversaries may hide their attacks by claiming a false history, nodes exchange their communication histories and detect an attacker who has presented an inconsistent communication history. However, this approach increases node energy consumption since the number of communication histories increases every time a node communicates with another node. To deal with this problem, in this paper, we propose an energy-efficient defense against such message flooding attacks. The main idea of the proposed scheme is to time limit the communication history exchange so as to reduce the volume while ensuring the effective detection of inconsistencies. The advantage of this approach is that, by removing communication histories after they have revealed such inconsistencies, the energy consumption is reduced. To estimate such expiration time, analytical expressions based upon a Markov chain based message propagation model, are derived for the probability that a communication history reveals such inconsistency in an arbitrary time. Extensive performance evaluation results obtained by means of computer simulations and several performance criteria verify that the proposed scheme successfully improves the overall energy efficiency. For example, these performance results have shown that, as compared to other previously known defenses against message flooding attacks, the proposed scheme extends by at least 22% the battery lifetime of DTN nodes, while maintaining the same levels of protection.

  • Energy-Efficient Secure Transmission for Cognitive Radio Networks with SWIPT

    Ke WANG  Wei HENG  Xiang LI  Jing WU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/03/03
      Vol:
    E103-B No:9
      Page(s):
    1002-1010

    In this paper, the artificial noise (AN)-aided multiple-input single-output (MISO) cognitive radio network with simultaneous wireless information and power transfer (SWIPT) is considered, in which the cognitive user adopts the power-splitting (PS) receiver architecture to simultaneously decode information and harvest energy. To support secure communication and facilitate energy harvesting, AN is transmitted with information signal at cognitive base station (CBS). The secrecy energy efficiency (SEE) maximization problem is formulated with the constraints of secrecy rate and harvested energy requirements as well as primary user's interference requirements. However, this challenging problem is non-convex due to the fractional objective function and the coupling between the optimization variables. For tackling the challenging problem, a double-layer iterative optimization algorithm is developed. Specifically, the outer layer invokes a one-dimension search algorithm for the newly introduced tight relaxation variable, while the inner one leverages the Dinkelbach method to make the fractional optimization problem more tractable. Furthermore, closed-form expressions for the power of information signal and AN are obtained. Numerical simulations are conducted to demonstrate the efficiency of our proposed algorithm and the advantages of AN in enhancing the SEE performance.

  • Optimal Power Allocation for Green CR over Fading Channels with Rate Constraint

    Cong WANG  Tiecheng SONG  Jun WU  Wei JIANG  Jing HU  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/03/16
      Vol:
    E103-B No:9
      Page(s):
    1038-1048

    Green cognitive radio (CR) plays an important role in offering secondary users (SUs) with more spectrum with smaller energy expenditure. However, the energy efficiency (EE) issues associated with green CR for fading channels have not been fully studied. In this paper, we investigate the average EE maximization problem for spectrum-sharing CR in fading channels. Unlike previous studies that considered either the peak or the average transmission power constraints, herein, we considered both of these constraints. Our aim is to maximize the average EE of SU by optimizing the transmission power under the joint peak and average transmit power constraints, the rate constraint of SU and the quality of service (QoS) constraint of primary user (PU). Specifically, the QoS for PU is guaranteed based on either the average interference power constraint or the PU outage constraint. To address the non-convex optimization problem, an iterative optimal power allocation algorithm that can tackle the problem efficiently is proposed. The optimal transmission powers are identified under both of perfect and imperfect channel side information (CSI). Simulations show that our proposed scheme can achieve higher EE over the existing scheme and the EE achieved under perfect CSI is better than that under imperfect CSI.

  • Energy Efficiency Optimization for Secure SWIPT System

    Chao MENG  Gang WANG  Bingjian YAN  Yongmei LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/10/29
      Vol:
    E103-B No:5
      Page(s):
    582-590

    This paper investigates the secrecy energy efficiency maximization (SEEM) problem in a simultaneous wireless information and power transfer (SWIPT) system, wherein a legitimate user (LU) exploits the power splitting (PS) scheme for simultaneous information decoding (ID) and energy harvesting (EH). To prevent interference from eavesdroppers on the LU, artificial noise (AN) is incorporated into the confidential signal at the transmitter. We maximize the secrecy energy efficiency (SEE) by joining the power of the confidential signal, the AN power, and the PS ratio, while taking into account the minimum secrecy rate requirement of the LU, the required minimum harvested energy, the allowed maximum radio frequency transmission power, and the PS ratio. The formulated SEEM problem involves nonconvex fractional programming and is generally intractable. Our solution is Lagrangian relaxation method than can transform the original problem into a two-layer optimization problem. The outer layer problem is a single variable optimization problem with a Lagrange multiplier, which can be solved easily. Meanwhile, the inner layer one is fractional programming, which can be transformed into a subtractive form solved using the Dinkelbach method. A closed-form solution is derived for the power of the confidential signal. Simulation results verify the efficiency of the proposed SEEM algorithm and prove that AN-aided design is an effective method for improving system SEE.

  • An Energy-Efficient Task Scheduling for Near Real-Time Systems on Heterogeneous Multicore Processors

    Takashi NAKADA  Hiroyuki YANAGIHASHI  Kunimaro IMAI  Hiroshi UEKI  Takashi TSUCHIYA  Masanori HAYASHIKOSHI  Hiroshi NAKAMURA  

     
    PAPER-Software System

      Pubricized:
    2019/11/01
      Vol:
    E103-D No:2
      Page(s):
    329-338

    Near real-time periodic tasks, which are popular in multimedia streaming applications, have deadline periods that are longer than the input intervals thanks to buffering. For such applications, the conventional frame-based schedulings cannot realize the optimal scheduling due to their shortsighted deadline assumptions. To realize globally energy-efficient executions of these applications, we propose a novel task scheduling algorithm, which takes advantage of the long deadline period. We confirm our approach can take advantage of the longer deadline period and reduce the average power consumption by up to 18%.

  • Energy-Efficient Full-Duplex Enabled Cloud Radio Access Networks

    Tung Thanh VU  Duy Trong NGO  Minh N. DAO  Quang-Thang DUONG  Minoru OKADA  Hung NGUYEN-LE  Richard H. MIDDLETON  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/07/18
      Vol:
    E103-B No:1
      Page(s):
    71-78

    This paper studies the joint optimization of precoding, transmit power and data rate allocation for energy-efficient full-duplex (FD) cloud radio access networks (C-RANs). A new nonconvex problem is formulated, where the ratio of total sum rate to total power consumption is maximized, subject to the maximum transmit powers of remote radio heads and uplink users. An iterative algorithm based on successive convex programming is proposed with guaranteed convergence to the Karush-Kuhn-Tucker solutions of the formulated problem. Numerical examples confirm the effectiveness of the proposed algorithm and show that the FD C-RANs can achieve a large gain over half-duplex C-RANs in terms of energy efficiency at low self-interference power levels.

  • Power Allocation Scheme for Energy Efficiency Maximization in Distributed Antenna System with Discrete-Rate Adaptive Modulation

    Xiangbin YU  Xi WANG  Tao TENG  Qiyishu LI  Fei WANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/02/12
      Vol:
    E102-B No:8
      Page(s):
    1705-1714

    In this paper, we study the power allocation (PA) scheme design for energy efficiency (EE) maximization with discrete-rate adaptive modulation (AM) in the downlink distributed antenna system (DAS). By means of the Karush-Kuhn-Tucker (KKT) conditions, an optimal PA scheme with closed-form expression is derived for maximizing the EE subject to maximum transmit power and target bit error rate (BER) constraints, where the number of active transmit antennas is also derived for attaining PA coefficients. Considering that the optimal scheme needs to calculate the PA of all transmit antennas for each modulation mode, its complexity is extremely high. For this reason, a low-complexity suboptimal PA is also presented based on the antenna selection method. By choosing one or two remote antennas, the suboptimal scheme offers lower complexity than the optimal one, and has almost the same EE performance as the latter. Besides, the outage probability is derived in a performance evaluation. Computer simulation shows that the developed optimal scheme can achieve the same EE as the exhaustive search based approach, which has much higher complexity, and the suboptimal scheme almost matches the EE of the optimal one as well. The suboptimal scheme with two-antenna selection is particularly effective in terms of balancing performance and complexity. Moreover, the derived outage probability is in good agreement with the corresponding simulation.

  • Green Resource Allocation in OFDMA Networks with Opportunistic Beamforming-Based DF Relaying

    Tao WANG  Mingfang WANG  Yating WU  Yanzan SUN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/02/04
      Vol:
    E102-B No:8
      Page(s):
    1715-1727

    This paper proposes an energy efficiency (EE) maximized resource allocation (RA) algorithm in orthogonal frequency division multiple access (OFDMA) downlink networks with multiple relays, where a novel opportunistic subcarrier pair based decode-and-forward (DF) protocol with beamforming is used. Specifically, every data transmission is carried out in two consecutive time slots. During every transmission, multiple parallel paths, including relayed paths and direct paths, are established by the proposed RA algorithm. As for the protocol, each subcarrier in the 1st slot can be paired with any subcarrier in 2nd slot to best utilize subcarrier resources. Furthermore, for each relayed path, multiple (not just single or all) relays can be chosen to apply beamforming at the subcarrier in the 2nd slot. Each direct path is constructed by an unpaired subcarrier in either the 1st or 2nd slot. In order to guarantee an acceptable spectrum efficiency, we also introduce a minimum rate constraint. The EE-maximized problem is a highly nonlinear optimization problem, which contains both continuous, discrete variables and has a fractional structure. To solve the problem, the best relay set and resource allocation for a relayed path are derived first, then we design an iterative algorithm to find the optimal RA for the network. Finally, numerical experiments are taken to demonstrate the effectiveness of the proposed algorithm, and show the impact of minimum rate requirement, user number and circuit power on the network EE.

  • Robust Beamforming and Power Splitting for Secure CR Network with Practical Energy Harvesting

    Lei NI  Xinyu DA  Hang HU  Miao ZHANG  Hehao NIU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/01/25
      Vol:
    E102-B No:8
      Page(s):
    1547-1553

    This paper introduces an energy-efficient transmit design for multiple-input single-output (MISO) energy-harvesting cognitive radio (CR) networks in the presence of external eavesdroppers (Eves). Due to the inherent characteristics of CR network with simultaneous wireless information and power transfer (SWIPT), Eves may illegitimately access the primary user (PU) bands, and the confidential message is prone to be intercepted in wireless communications. Assuming the channel state information (CSI) of the Eves is not perfectly known at the transmitter, our approach to guaranteeing secrecy is to maximize the secrecy energy efficiency (SEE) by jointly designing the robust beamforming and the power splitting (PS) ratio, under the constraints of total transmit power, harvested energy at secondary receiver (SR) and quality of service (QoS) requirement. Specifically, a non-linear energy harvesting (EH) model is adopted for the SR, which can accurately characterize the property of practical RF-EH circuits. To solve the formulated non-convex problem, we first employ fractional programming theory and penalty function to recast it as an easy-to-handle parametric problem, and then deal with the non-convexity by applying S-Procedure and constrained concave convex procedure (CCCP), which enables us to exploit the difference of concave functions (DC) programming to seek the maximum worst-case SEE. Finally, numerical results are presented to verify the performance of the proposed scheme.

  • Adaptive Group Formation Scheme for Mobile Group Wireless Sensor Networks

    Mochammad Zen Samsono HADI  Yuichi MIYAJI  Hideyuki UEHARA  

     
    PAPER-Network

      Pubricized:
    2019/01/09
      Vol:
    E102-B No:7
      Page(s):
    1313-1322

    In this paper, we propose a novel group formation scheme which is integrated with an EMGC protocol in order to cope with dynamic group change. It uses a link expiration time and residual energy to form a stable link in a group. It also has a group merging procedure to decrease the number of groups. Furthermore, we develop two additional functions for the protocol, i.e., GL rotation and a stay connection procedure to diminish energy consumption of sensor nodes in the network. Simulation results show that the proposed protocol outperforms MBC, EMGCwoh, and EMGC protocols in terms of data delivery, network lifetime, and energy dissipation per round with various group change probabilities and percentages of groups.

  • Optimized Power Allocation Scheme for Distributed Antenna Systems with D2D Communication

    Xingquan LI  Chunlong HE  Jihong ZHANG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/11/21
      Vol:
    E102-B No:5
      Page(s):
    1061-1068

    In this paper, we investigate different power allocation optimization problems with interferences for distributed antenna systems (DAS) with and without D2D communication, respectively. The first objective problem is maximizing spectral efficiency (SE) of the DAS with D2D communication under the constraints of the minimum SE requirements of user equipment (UE) and D2D pair, maximum transmit power of each remote access unit (RAU) and maximum transmit power of D2D transmitter. We transform this non-convex objective function into a difference of convex functions (D.C.) then using the concave-convex procedure (CCCP) algorithm to solve the optimization problem. The second objective is maximizing energy efficiency (EE) of the DAS with D2D communication under the same constraints. We first exploit fractional programming theory to obtain the equivalent objective function of the second problem with subtract form, and then transform it into a D.C. problem and use CCCP algorithm to obtain the optimal power allocation. In each part, we summarize the corresponding optimal power allocation algorithms and also use similar method to obtain optimal solutions of the same optimization problems in DAS. Simulation results are provided to demonstrate the effectiveness of the designed power allocation algorithms and illustrate the SE and EE of the DAS by using D2D communication are much better than DAS without D2D communication.

  • A Novel Energy-Efficient Packet Transmission Protocol for Cluster-Based Cooperative Network

    Jianming CHENG  Yating GAO  Leiqin YAN  Hongwen YANG  

     
    PAPER

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    768-778

    Cooperative communication can reduce energy consumption effectively due to its superior diversity gain. To further prolong network lifetime and improve the energy efficiency, this paper studies energy-efficient packet transmission in wireless ad-hoc networks and proposes a novel cluster-based cooperative packet transmission (CCPT) protocol to mitigate the packet loss and balance the energy consumption of networks. The proposed CCPT protocol first constructs a highly energy-efficient initial routing path based on the required energy cost of non-cooperative transmission. Then an iterative cluster recruitment algorithm is proposed that selects cooperative nodes and organizing them into clusters, which can create transmit diversity in each hop of communication. Finally, a novel two-step cluster-to-cluster cooperative transmission scheme is designed, where all cluster members cooperatively forward the packet to the next-hop cluster. Simulation results show that the CCPT protocol effectively reduces the energy cost and prolongs the network lifetime compared with the previous CwR and noC schemes. The results also have shown that the proposed CCPT protocol outperforms the traditional CwR protocol in terms of transmit efficiency per energy, which indicates that CCPT protocol has achieved a better trade-off between energy and packet arrival ratio.

1-20hit(107hit)