The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] interleaving(59hit)

21-40hit(59hit)

  • Almost Quadriphase Sequences with Even Period and Low Autocorrelation

    XiuPing PENG  Chengqian XU  Kai LIU  

     
    LETTER-Coding Theory

      Vol:
    E95-A No:4
      Page(s):
    832-834

    A new class of almost quadriphase sequences with four zero elements of period 4N, where N ≡ 1(mod 4) being a prime, is constructed. The maximum nontrivial autocorrelations of the constructed almost quadriphase sequences are shown to be 4.

  • Construction of Mutually Orthogonal Zero Correlation Zone Polyphase Sequence Sets

    Yubo LI  Chengqian XU  Kai LIU  

     
    LETTER-Information Theory

      Vol:
    E94-A No:4
      Page(s):
    1159-1164

    In this paper, two constructions of mutually orthogonal zero correlation zone polyphase sequence sets are presented. The first one is based on DFT matrices and interleaving iteration. After each recursive step, the period of sequence and the length of zero-correlation zone are two times larger than that in the last step. The second method, based on DFT matrices and orthogonal matrices, can generate numbers of mutually orthogonal optimal ZCZ sequence sets whose parameters reach the theoretical bounds by using interleaving and shifting techniques. As a result, the algorithms proposed can provide more sequences for the QS-CDMA (quasi-synchronous CDMA) systems.

  • Performance Evaluation of Iterative LDPC-Coded MIMO OFDM System with Time Interleaving

    Kazuhiko MITSUYAMA  Kohei KAMBARA  Takayuki NAKAGAWA  Tetsuomi IKEDA  Tomoaki OHTSUKI  

     
    PAPER

      Vol:
    E93-A No:12
      Page(s):
    2654-2662

    Multiple-input multiple-output (MIMO) OFDM technique is an attractive solution to increase the spectrum efficiency for mobile transmission applications. However, high spatial correlation makes signal detection difficult in real outdoor environments, and thus various methods have been developed to improve the detection performance. An iterative low-density parity-check (LDPC) coded multiple-input multiple-output (MIMO) system is a promising method for solving this problem, and its performance has been analyzed theoretically. This paper proposes an iterative LDPC minimum mean square error with soft interference cancellation (LDPC-MMSE-SIC) receiver with a time de-interleaver in front of the MMSE detector and evaluates its performance by computer simulation using channel state information (CSI) acquired in real outdoor measurements. We show that the iterative detection and decoding system with time interleaving, which is long enough to cover a fading cycle, achieves excellent error rate performance in mobile LOS environments and outperforms an LDPC maximum likelihood detection (LDPC-MLD) receiver with the same error correction and interleaving.

  • A Class of Complementary Sequences with Multi-Width Zero Cross-Correlation Zone

    Zhenyu ZHANG  Fanxin ZENG  Guixin XUAN  

     
    PAPER-Coding Theory

      Vol:
    E93-A No:8
      Page(s):
    1508-1517

    A novel construction of complementary sequences with multi-width zero cross-correlation zone (ZCCZ) is presented based on the interleaving iteration of a basic kernel set. The presented multi-width ZCCZ complementary (MWZC) sequences can be divided into multiple sequence groups, the correlation functions of which possess one-width intragroup ZCCZ and multi-width intergroup ZCCZ. When an arbitrary orthogonal sequence set with set size equal to sequence length is used as a basic kernel set, the constructed MWZC sequence set and the combination sets of specific subsets with each subset including several groups can be optimal with respect to the theoretical bound on set size. In addition, the MWZC sequence set includes complementary sequence sets with one-width or two-width ZCCZ as special subsets, and allows a more flexible choice of sequence parameters.

  • Joint Carrier Distribution and Frequency Hopping Scheme for Improving the BER Performance in PB/MC-CDMA Systems

    Kyujin LEE  Kyesan LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:10
      Page(s):
    3270-3273

    In this paper, we propose a novel frequency-hopping scheme in order to improve the BER (Bit Error Rate) performance of the Partial Block MC-CDMA (PB/MC-CDMA) system. The joint carrier distribution and frequency hopping (JDFH) scheme achieves the optimal frequency diversity gain while avoiding interference. By contrast, the conventional FH scheme only avoids interference, and the frequency interleaving scheme achieves only frequency diversity. The JDFH scheme thus performs better than conventional schemes, such as carrier FH, block FH, or frequency interleaving. Through computer simulations, we confirmed the superior performance of the PB/MC-CDMA system when using the JDFH scheme.

  • Preamble Structure for IEEE 802.11n Wireless LAN System

    Tsuguhide AOKI  Yoshimasa EGASHIRA  Daisuke TAKEDA  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E92-B No:10
      Page(s):
    3219-3227

    This paper proposes a preamble structure that raises the throughput of the physical layer of a MIMO-OFDM system that complies with IEEE 802.11n. The proposed preamble is based on two important criteria that have not been considered in conventional preamble structures but have an important bearing on realization of IEEE 802.11n. One is backward compatibility with legacy devices, such as IEEE 802.11a or IEEE 802.11g. The other is accurate AGC for MIMO data payload of the packet. Computer simulations and a laboratory test demonstrate that the proposed preamble is superior to the other preambles with respect to those two important criteria. The results were submitted to the task group N under the IEEE 802.11 working group and contributed to development of the current draft of IEEE 802.11n.

  • Architectural Exploration and Design of Time-Interleaved SAR Arrays for Low-Power and High Speed A/D Converters

    Sergio SAPONARA  Pierluigi NUZZO  Claudio NANI  Geert VAN DER PLAS  Luca FANUCCI  

     
    PAPER

      Vol:
    E92-C No:6
      Page(s):
    843-851

    Time-interleaved (TI) analog-to-digital converters (ADCs) are frequently advocated as a power-efficient solution to realize the high sampling rates required in single-chip transceivers for the emerging communication schemes: ultra-wideband, fast serial links, cognitive-radio and software-defined radio. However, the combined effects of multiple distortion sources due to channel mismatches (bandwidth, offset, gain and timing) severely affect system performance and power consumption of a TI ADC and need to be accounted for since the earlier design phases. In this paper, system-level design of TI ADCs is addressed through a platform-based methodology, enabling effective investigation of different speed/resolution scenarios as well as the impact of parallelism on accuracy, yield, sampling-rate, area and power consumption. Design space exploration of a TI successive approximation ADC is performed top-down via Monte Carlo simulations, by exploiting behavioral models built bottom-up after characterizing feasible implementations of the main building blocks in a 90-nm 1-V CMOS process. As a result, two implementations of the TI ADC are proposed that are capable to provide an outstanding figure-of-merit below 0.15 pJ/conversion-step.

  • Performance Improvement by Frequency-Domain Interleaving for OFDM/TDM Using MMSE-FDE in a Wireless Channel

    Haris GACANIN  Fumiyuki ADACHI  

     
    LETTER

      Vol:
    E92-B No:5
      Page(s):
    1813-1817

    The use of frequency-domain interleaving on a frame-by-frame basis for orthogonal frequency division multiplexing (OFDM) combined with time division multiplexing (OFDM/TDM) is presented. In conventional OFDM, FDE is not designed to exploit the channel frequency-selectivity and consequently, the frequency diversity gain cannot be obtained. To further improve the bit error rate (BER) performance of conventional OFDM an interleaving technique may be applied, but FDE cannot be fully exploited. In this letter, the OFDM/TDM signal (i.e., several concatenated OFDM signals) frequency components are interleaved at the transmitter and then, minimum mean square error frequency-domain equalization (MMSE-FDE) is applied at the receiver to obtain a larger frequency diversity gain. It is shown that frequency-domain interleaving on a frame-by-frame basis for OFDM/TDM using MMSE-FDE achieves improved BER performance in comparison with conventional OFDM due to enhanced frequency diversity gain.

  • Frequency Interleaved Multicarrier CDMA Systems with Two Kinds of Spreading Codes

    Cheolwoo YOU  Sooyong CHOI  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E91-B No:7
      Page(s):
    2214-2223

    We design a unified multicarrier (UMC) system for wideband communication. The proposed scheme can provide an effective and unified method that can implement a wideband CDMA system with high spectrum efficiency and flexibility because of the free selection of system parameters and a double spreading in the time and frequency domains. Also, separation of the spectrums carrying the same data to further ensure the independent fading between subcarriers is performed, that is, subcarriers are interleaved in the frequency domain. This frequency interleaving mitigates the effect of ISI and ICI. We also theoretically analyze the performance of the UMC system by deriving the closed-form solution for probability of bit error in a frequency selective Rayleigh fading channel. The analysis has proved that the UMC system has outperformed the conventional single carrier CDMA system under given conditions.

  • An 8.8-GS/s 6-bit CMOS Time-Interleaved Flash Analog-to-Digital Converter with Multi-Phase Clock Generator

    Young-Chan JANG  Jun-Hyun BAE  Sang-Hune PARK  Jae-Yoon SIM  Hong-June PARK  

     
    PAPER

      Vol:
    E90-C No:6
      Page(s):
    1156-1164

    An 8.8-GS/s 6-bit CMOS analog-to-digital converter (ADC) chip was implemented by time-interleaving eight 1.1-GS/s 6-bit flash ADCs with a 0.18-µm CMOS process. Eight uniformly-spaced 1.1 GHz clocks with 50% duty cycle for the eight flash ADCs were generated by a clock generator, which consists of a phase-locked-loop, digital phase adjusters and digital duty cycle correctors. The input bandwidth of ADC with the ENOB larger than 5.0 bits was measured to be 1.2 GHz. The chip area and power consumption were 2.24 mm2 and 1.6 W, respectively.

  • Frequency-Interleaved Spread Spectrum with MMSE Frequency-Domain Equalization

    Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:2
      Page(s):
    260-268

    The use of frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion can significantly improve the downlink bit error rate (BER) performances of DS- and MC-CDMA in a frequency-selective fading channel. However, the uplink BER performance degrades due to a strong multi-user interference (MUI). In this paper, we propose frequency-interleaved spread spectrum (SS) using MMSE-FDE, in which the subcarrier components of each user's signal are interleaved onto a wider bandwidth. Then, the frequency-interleaved frequency-domain signal is transformed into a time-domain signal by the inverse fast Fourier transform (IFFT). Frequency-interleaving patterns assigned to different users are orthogonal to each other. The proposed scheme can avoid the MUI completely while achieving frequency diversity gain due to MMSE-FDE. It is shown by computer simulation that the use of frequency-interleaving can significantly improve the uplink performance in a frequency-selective Rayleigh fading channel.

  • 2-Dimensional OVSF Spread/Chip-Interleaved CDMA

    Le LIU  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:12
      Page(s):
    3363-3375

    Multiple-access interference (MAI) limits the bit error rate (BER) performance of CDMA uplink transmission. In this paper, we propose a generalized chip-interleaved CDMA with 2-dimensional (2D) spreading using orthogonal variable spreading factor (OVSF) codes to minimize the MAI effects and achieve the maximum available time- and frequency-domain diversity gains. We present the code assignment for 2D spreading to provide users with flexible multi-rate data transmission. A computer simulation shows that by the joint use of 2D OVSF spreading and chip-interleaving, MAI-free transmission is possible for the quasi-synchronous DS- or MC-CDMA uplink, and hence the single-user frequency-domain equalization based on the MMSE criterion can be applied for signal detection. The BER performance in a time- and frequency-selective fading multiuser channel is theoretically analyzed and evaluated by both numerical computation and computer simulation.

  • Single Code-Based Dynamic Grouping with Cycle Interleaving Algorithm for Reducing Waste Rate in WCDMA Cellular Networks

    Ben-Jye CHANG  Min-Xiou CHEN  Ren-Hung HWANG  Kun-Chan TSAI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:12
      Page(s):
    3306-3318

    3G must offer high data rates since it should support real-time multimedia services; one performance enhancement, the use of the OVSF code tree, has adopted in 3G WCDMA networks. Unfortunately, this technique allows the link capacity to be set at the base rate times powers of two. This results in wasting bandwidth while the required rate is not powers of two of the basic rate. Several multi-code assignment mechanisms have been proposed to reduce the waste rate, but incur some drawbacks, including high complexity of handling multiple codes and increasing cost of using more rake combiners. Our solution is a dynamic grouping code assignment that allows any rate to be achieved with a single code for any possible rate of traffic. The dynamic grouping approach first forms several calls into a group. It then allocates a subtree to the group and dynamically shares the subtree codes based on time-sharing of slots within a group cycle time. The waste rate and code blocking is thus reduced significantly. Since transmission delay and jitter may occur in such a time-sharing approach, two schemes of cycle interleaving are proposed to minimize delay and jitter. Numerical results demonstrate that the proposed approach reduces the waste rate and increases the system utilization obviously, and the proposed cycle interleaving schemes minimizes delay and jitter significantly.

  • A Hybrid FEC Method Using Packet-Level Convolution and Reed-Solomon Codes

    Jun TAKAHASHI  Hideki TODE  Koso MURAKAMI  

     
    PAPER-Network

      Vol:
    E89-B No:8
      Page(s):
    2143-2151

    Efficient real-time contents distribution services on the Internet are only possible by suppressing the influence of packet losses. One solution for UDP transmission is the use of Forward Error Correction (FEC) based on Reed-Solomon codes. However, a more efficient method is required since this causes the increase of network traffic and includes the weakness to burst packet losses. In this paper, we propose a data recovery method that generates redundant data with the combination of Reed-Solomon codes and convolution of neighboring blocks. We realize the small amount of redundancy and the high reliability in data transmission compared with using only Reed-Solomon codes in the environment that burst packet losses are occurred frequently. We implement proposal method into the network bridge and confirm its efficiency from the viewpoint of data reconstruction from burst packet losses.

  • Cryptanalysis on the Robust and Simple Authentication Protocol for Secure Communication on the Web

    KyungKeun LEE  YoungHo PARK  SangJae MOON  

     
    LETTER-Information Security

      Vol:
    E89-A No:6
      Page(s):
    1859-1862

    Recently, Yoon et al. exhibited the vulnerability of the smart-card-equipped password based authentication protocol proposed by Chien et al. to the Denning-Sacco attack. Furthermore, they also pointed out that the protocol does not provide the perfect forward secrecy. Accordingly, they presented an enhanced protocol to strengthen the security. This letter, however, demonstrates an interleaving attack on the Yoon et al.'s improved protocol and also discusses how to defend the protocol from the attack presented here.

  • Key Technologies for Miniaturization and Power Reduction of Analog-to-Digital Converters for Video Use

    Masao HOTTA  Tatsuji MATSUURA  

     
    INVITED PAPER

      Vol:
    E89-C No:6
      Page(s):
    664-672

    Analog-to-Digital converters (ADCs) for video applications have made exciting progress in miniaturization and power reduction in the past 20 years. This paper mainly describes the key technologies for miniaturization and power reduction of 10-bit video-frequency ADCs. By reviewing useful architectures and circuit schemes for video-frequency ADCs, self-calibration techniques and interleaving techniques are surveyed. The subranging pipeline look-ahead ADC architecture is introduced. It has a potential for reducing power consumption and improving conversion rate when minute deep submicron CMOS devices are used with low supply voltage.

  • Simple Multiphase Control for Paralleled Converter System

    Teruhiko KOHAMA  Gen ENDO  Hiroshi SHIMAMORI  Tamotsu NINOMIYA  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E88-B No:12
      Page(s):
    4636-4642

    A simple method for interleaving operation suitable for paralleled converter system is proposed. This method automatically detects the number of converters and adjusts phases between converter modules equally for any number of modules in the system. The method is realized by simple analog circuit which is easily implemented as conventional PWM controller IC. Principle of multiphase controlling circuit is introduced, and the influence of non-ideal circuit parameters on interleaving operation are discussed. A compensator for reducing phase error is also proposed to achieve wide-use application. Experimental and analytical results confirm the effectiveness of the proposed method.

  • An OFDM Scheme with Pre-IDFT/DFT on Frequency-Selective Rayleigh Fading Channels

    Jeong-Woo JWA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:7
      Page(s):
    3073-3077

    In this paper, we propose an OFDM scheme with pre-IDFT/DFT and the frequency domain equalization on frequency-selective Rayleigh fading channels. In this scheme, a two-dimensional block interleaving is used to randomize the correlated noise caused by the frequency domain linear equalizer. Then, the pre-DFT averages the interleaved noise enhancement and improves the error performance of the proposed scheme. Computer simulations confirm the bit error probability of the proposed scheme for multilevel modulations.

  • Reconfigurable Adaptive FEC System Based on Reed-Solomon Code with Interleaving

    Kazunori SHIMIZU  Nozomu TOGAWA  Takeshi IKENAGA  Satoshi GOTO  

     
    PAPER-Adaptive Signal Processing

      Vol:
    E88-D No:7
      Page(s):
    1526-1537

    This paper proposes a reconfigurable adaptive FEC system based on Reed-Solomon (RS) code with interleaving. In adaptive FEC schemes, error correction capability t is changed dynamically according to the communication channel condition. For given error correction capability t, we can implement an optimal RS decoder composed of minimum hardware units for each t. If the hardware units of the RS decoder can be reduced for any given error correction capability t, we can embed as large deinterleaver as possible into the RS decoder for each t. Reconfiguring the RS decoder embedded with the expanded deinterleaver dynamically for each error correction capability t allows us to decode larger interleaved codes which are more robust error correction codes to burst errors. In a reliable transport protocol, experimental results show that our system achieves up to 65% lower packet error rate and 5.9% higher data transmission throughput compared to the adaptive FEC scheme on a conventional fixed hardware system. In an unreliable transport protocol, our system achieves up to 76% better bit error performance with higher code rate compared to the adaptive FEC scheme on a conventional fixed hardware system.

  • Study on the OVSF Code Selection for Downlink MC-CDMA

    Takamichi INOUE  Deepshikha GARG  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    499-508

    In downlink MC-CDMA, orthogonal variable spreading factor (OVSF) codes can be used to allow multirate communications while maintaining the orthogonality among the users with different data rates. In this paper, we point out that simple selection of the OVSF codes results in degraded performance. We show that this happens because simple code selection results in power concentration over certain consecutive subcarriers; severe power loss in the received signal occurs when these subcarriers experience a deep fade in a frequency selective fading channel. In addition, we show two effective techniques to avoid the performance degradation: random code selection and frequency interleaving; which technique provides a better performance depends on modulation level, code multiplexing order, and presence of channel coding.

21-40hit(59hit)