The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ion(25216hit)

281-300hit(25216hit)

  • Low Complexity Overloaded MIMO Non-Linear Detector with Iterative LLR Estimation

    Satoshi DENNO  Shuhei MAKABE  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E107-B No:3
      Page(s):
    339-348

    This paper proposes a non-linear overloaded MIMO detector that outperforms the conventional soft-input maximum likelihood detector (MLD) with less computational complexity. We propose iterative log-likelihood ratio (LLR) estimation and multi stage LLR estimation for the proposed detector to achieve such superior performance. While the iterative LLR estimation achieves better BER performance, the multi stage LLR estimation makes the detector less complex than the conventional soft-input maximum likelihood detector (MLD). The computer simulation reveals that the proposed detector achieves about 0.6dB better BER performance than the soft-input MLD with about half of the soft-input MLD's complexity in a 6×3 overloaded MIMO OFDM system.

  • Uniaxially Symmetrical T-Junction OMT with 45° -Tilted Branch Waveguide Ports

    Hidenori YUKAWA  Yu USHIJIMA  Toru TAKAHASHI  Toru FUKASAWA  Yoshio INASAWA  Naofumi YONEDA  Moriyasu MIYAZAKI  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/10/13
      Vol:
    E107-C No:3
      Page(s):
    57-65

    A T-junction orthomode transducer (OMT) is a waveguide component that separates two orthogonal linear polarizations in the same frequency band. It has a common circular waveguide short-circuited at one end and two branch rectangular waveguides arranged in opposite directions near the short circuit. One of the advantages of a T-junction OMT is its short axial length. However, the two rectangular ports, which need to be orthogonal, have different levels of performance because of asymmetry. We therefore propose a uniaxially symmetrical T-junction OMT, which is configured such that the two branch waveguides are tilted 45° to the short circuit. The uniaxially symmetrical configuration enables same levels of performance for the two ports, and its impedance matching is easier compared to that for the conventional configuration. The polarization separation principle can be explained using the principles of orthomode junction (OMJ) and turnstile OMT. Based on calculations, the proposed configuration demonstrated a return loss of 25dB, XPD of 30dB, isolation of 21dB between the two branch ports, and loss of 0.25dB, with a bandwidth of 15% in the K band. The OMT was then fabricated as a single piece via 3D printing and evaluated against the calculated performance indices.

  • Design of a Capacitive Coupler for Underwater Wireless Power Transfer Focused on the Landing Direction of a Drone

    Yasumasa NAKA  Masaya TAMURA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/10/13
      Vol:
    E107-C No:3
      Page(s):
    66-75

    This paper presents the design of a capacitive coupler for underwater wireless power transfer focused on the landing direction of a drone. The main design feature is the relative position of power feeding/receiving points on the coupler electrodes, which depends on the landing direction of the drone. First, the maximum power transfer efficiencies of coupled lines with different feeding positions are derived in a uniform dielectric environment, such as that realized underwater. As a result, these are formulated by the coupling coefficient of the capacitive coupler, the unloaded qualify factor of dielectrics, and hyperbolic functions with complex propagation constants. The hyperbolic functions vary depending on the relative positions and whether these are identical or opposite couplers, and the efficiencies of each coupler depend on the type of water, such as seawater and tap water. The design method was demonstrated and achieved the highest efficiencies of 95.2%, 91.5%, and 85.3% in tap water at transfer distances of 20, 50, and 100 mm, respectively.

  • Influence of the Gate Voltage or the Base Pair Ratio Modulation on the λ-DNA FET Performance

    Naoto MATSUO  Akira HEYA  Kazushige YAMANA  Koji SUMITOMO  Tetsuo TABEI  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2023/08/08
      Vol:
    E107-C No:3
      Page(s):
    76-79

    The influence of the gate voltage or base pair ratio modulation on the λ-DNA FET performance was examined. The result of the gate voltage modulation indicated that the captured electrons in the guanine base of the λ-DNA molecules greatly influenced the Id-Vd characteristics, and that of the base pair ratio modulation indicated that the tendency of the conductivity was partly clarified by considering the activation energy of holes and electrons and the length and numbers of the serial AT or GC sequences over which the holes or electrons jumped. In addition, the influence of the dimensionality of the DNA molecule on the conductivity was discussed theoretically.

  • rOOM: A Rust-Based Linux Out of Memory Kernel Component

    Linhan LI  Qianying ZHANG  Zekun XU  Shijun ZHAO  Zhiping SHI  Yong GUAN  

     
    PAPER

      Pubricized:
    2023/12/14
      Vol:
    E107-D No:3
      Page(s):
    245-256

    The Linux kernel has been applied in various security-sensitive fields, so ensuring its security is crucial. Vulnerabilities in the Linux kernel are usually caused by undefined behaviors of the C programming language, the most threatening of which are memory safety vulnerabilities. Both the software-based and hardware approaches to memory safety have disadvantages of poor performance, false positives, and poor compatibility. This paper explores the feasibility of using the safe programming language Rust to reconstruct a Linux kernel component and open-source the component's code. We leverage the Rust FFI mechanism to design a safe foreign interface layer to enable the reconstructed component to invoke other Linux functionalities, and then use Rust to reconstruct the component, during which we leverage Rust's type-safety and ownership mechanisms to improve its security, and finally export the C interface of the component to enable the invocation by the Linux kernel. The performance and memory overhead of the reconstructed component, referred to as “rOOM”, were evaluated, revealing a performance overhead of 8.9% in kernel mode, 5% in user mode, 3% in real time, and a memory overhead of 0.06%. These results suggest that it is possible to develop key components of the Linux kernel using Rust in terms of functionality, performance, and memory overhead.

  • The Influence of Future Perspective on Job Satisfaction and Turnover Intention of Software Engineers

    Ikuto YAMAGATA  Masateru TSUNODA  Keitaro NAKASAI  

     
    LETTER

      Pubricized:
    2023/12/08
      Vol:
    E107-D No:3
      Page(s):
    268-272

    Software development companies must consider employees' job satisfaction and turnover intentions. To explain the related factors, this study focused on future perspective index (FPI). FPI was assumed to relate positively to satisfaction and negatively to turnover. In the analysis, we compared the FPI with existing factors that are considered to be related to job satisfaction. We discovered that the FPI was promising for enhancing explanatory power, particularly when analyzing satisfaction.

  • Solving Linear Regression with Insensitive Loss by Boosting

    Ryotaro MITSUBOSHI  Kohei HATANO  Eiji TAKIMOTO  

     
    PAPER

      Pubricized:
    2023/11/15
      Vol:
    E107-D No:3
      Page(s):
    294-300

    Following the formulation of Support Vector Regression (SVR), we consider a regression analogue of soft margin optimization over the feature space indexed by a hypothesis class H. More specifically, the problem is to find a linear model w ∈ ℝH that minimizes the sum of ρ-insensitive losses over all training data for as small ρ as posssible, where the ρ-insensitive loss for a single data (xi, yi) is defined as max{|yi - ∑h whh(xi)| - ρ, 0}. Intuitively, the parameter ρ and the ρ-insensitive loss are defined analogously to the target margin and the hinge loss in soft margin optimization, respectively. The difference of our formulation from SVR is two-fold: (1) we consider L1-norm regularization instead of L2-norm regularization, and (2) the feature space is implicitly defined by a hypothesis class instead of a kernel. We propose a boosting-type algorithm for solving the problem with a theoretically guaranteed convergence rate under a natural assumption on the weak learnability.

  • Non-Cooperative Rational Synthesis Problem on Stochastic Games for Positional Strategies

    So KOIDE  Yoshiaki TAKATA  Hiroyuki SEKI  

     
    PAPER

      Pubricized:
    2023/10/11
      Vol:
    E107-D No:3
      Page(s):
    301-311

    Synthesis problems on multiplayer non-zero-sum games (MG) with multiple environment players that behave rationally are the problems to find a good strategy of the system and have been extensively studied. This paper concerns the synthesis problems on stochastic MG (SMG), where a special controller other than players, called nature, which chooses a move in its turn randomly, may exist. Two types of synthesis problems on SMG exist: cooperative rational synthesis problem (CRSP) and non-cooperative rational synthesis problem (NCRSP). The rationality of environment players is modeled by Nash equilibria, and CRSP is the problem to decide whether there exists a Nash equilibrium that gives the system a payoff not less than a given threshold. Ummels et al. studied the complexity of CRSP for various classes of objectives and strategies of players. CRSP fits the situation where the system can make a suggestion of a strategy profile (a tuple of strategies of all players) to the environment players. However, in real applications, the system may rarely have an opportunity to make suggestions to the environment, and thus CRSP is optimistic. NCRSP is the problem to decide whether there exists a strategy σ0 of the system satisfying that for every strategy profile of the environment players that forms a 0-fixed Nash equilibrium (a Nash equilibrium where the system's strategy is fixed to σ0), the system obtains a payoff not less than a given threshold. In this paper, we investigate the complexity of NCRSP for positional (i.e. pure memoryless) strategies. We consider ω-regular objectives as the model of players' objectives, and show the complexity results of the problem for several subclasses of ω-regular objectives. In particular, the problem for terminal reachability (TR) objectives is shown to be Σp2-complete.

  • Graph Linear Notations with Regular Expressions

    Ren MIMURA  Kengo MIYAMOTO  Akio FUJIYOSHI  

     
    PAPER

      Pubricized:
    2023/10/11
      Vol:
    E107-D No:3
      Page(s):
    312-319

    This paper proposes graph linear notations and an extension of them with regular expressions. Graph linear notations are a set of strings to represent labeled general graphs. They are extended with regular expressions to represent sets of graphs by specifying chosen parts for selections and repetitions of certain induced subgraphs. Methods for the conversion between graph linear notations and labeled general graphs are shown. The NP-completeness of the membership problem for graph regular expressions is proved.

  • Feasibility of Estimating Concentration Level of Japanese Document Workers Based on Kana-Kanji Conversion Confirmation Time

    Ryosuke SAEKI  Takeshi HAYASHI  Ibuki YAMAMOTO  Kinya FUJITA  

     
    PAPER

      Pubricized:
    2023/11/29
      Vol:
    E107-D No:3
      Page(s):
    332-341

    This study discusses the feasibility to estimate the concentration level of Japanese document workers using computer. Based on the previous findings that dual-task scenarios increase reaction time, we hypothesized that the Kana-Kanji conversion confirmation time (KKCCT) would increase due to the decrease in cognitive resources allocated to the document task, i.e. the level of concentration on the task at hand. To examine this hypothesis, we conducted a set of experiments in which sixteen participants copied Kana text by typing and concurrently converted it into Kanji under three conditions: Normal, Dual-task, and Mental-fatigue. The results suggested the feasibility that KKCCT increased when participants were less concentrated on the task due to subtask or mental fatigue. These findings imply the potential utility of using confirmation time as a measure of concentration level in Japanese document workers.

  • An Intra- and Inter-Emotion Transformer-Based Fusion Model with Homogeneous and Diverse Constraints Using Multi-Emotional Audiovisual Features for Depression Detection

    Shiyu TENG  Jiaqing LIU  Yue HUANG  Shurong CHAI  Tomoko TATEYAMA  Xinyin HUANG  Lanfen LIN  Yen-Wei CHEN  

     
    PAPER

      Pubricized:
    2023/12/15
      Vol:
    E107-D No:3
      Page(s):
    342-353

    Depression is a prevalent mental disorder affecting a significant portion of the global population, leading to considerable disability and contributing to the overall burden of disease. Consequently, designing efficient and robust automated methods for depression detection has become imperative. Recently, deep learning methods, especially multimodal fusion methods, have been increasingly used in computer-aided depression detection. Importantly, individuals with depression and those without respond differently to various emotional stimuli, providing valuable information for detecting depression. Building on these observations, we propose an intra- and inter-emotional stimulus transformer-based fusion model to effectively extract depression-related features. The intra-emotional stimulus fusion framework aims to prioritize different modalities, capitalizing on their diversity and complementarity for depression detection. The inter-emotional stimulus model maps each emotional stimulus onto both invariant and specific subspaces using individual invariant and specific encoders. The emotional stimulus-invariant subspace facilitates efficient information sharing and integration across different emotional stimulus categories, while the emotional stimulus specific subspace seeks to enhance diversity and capture the distinct characteristics of individual emotional stimulus categories. Our proposed intra- and inter-emotional stimulus fusion model effectively integrates multimodal data under various emotional stimulus categories, providing a comprehensive representation that allows accurate task predictions in the context of depression detection. We evaluate the proposed model on the Chinese Soochow University students dataset, and the results outperform state-of-the-art models in terms of concordance correlation coefficient (CCC), root mean squared error (RMSE) and accuracy.

  • Exploring the Effects of Japanese Font Designs on Impression Formation and Decision-Making in Text-Based Communication

    Rintaro CHUJO  Atsunobu SUZUKI  Ari HAUTASAARI  

     
    PAPER

      Pubricized:
    2023/12/11
      Vol:
    E107-D No:3
      Page(s):
    354-362

    Text-based communication, such as text chat, is commonly employed in various contexts, both professional and personal. However, it lacks the rich emotional cues present in verbal and visual forms of communication, such as facial expressions and tone of voice, making it more challenging to convey emotions and increasing the likelihood of misunderstandings. In this study, we focused on typefaces as emotional cues employed in text-based communication and investigated the influence of font design on impression formation and decision-making through two experiments. The results of the experiments revealed the relationship between Japanese typeface design and impression formation, and indicated that advice presented in a font evoking an impression of high confidence was more likely to be accepted than advice presented in a font evoking an impression of low confidence.

  • Simultaneous Adaptation of Acoustic and Language Models for Emotional Speech Recognition Using Tweet Data

    Tetsuo KOSAKA  Kazuya SAEKI  Yoshitaka AIZAWA  Masaharu KATO  Takashi NOSE  

     
    PAPER

      Pubricized:
    2023/12/05
      Vol:
    E107-D No:3
      Page(s):
    363-373

    Emotional speech recognition is generally considered more difficult than non-emotional speech recognition. The acoustic characteristics of emotional speech differ from those of non-emotional speech. Additionally, acoustic characteristics vary significantly depending on the type and intensity of emotions. Regarding linguistic features, emotional and colloquial expressions are also observed in their utterances. To solve these problems, we aim to improve recognition performance by adapting acoustic and language models to emotional speech. We used Japanese Twitter-based Emotional Speech (JTES) as an emotional speech corpus. This corpus consisted of tweets and had an emotional label assigned to each utterance. Corpus adaptation is possible using the utterances contained in this corpus. However, regarding the language model, the amount of adaptation data is insufficient. To solve this problem, we propose an adaptation of the language model by using online tweet data downloaded from the internet. The sentences used for adaptation were extracted from the tweet data based on certain rules. We extracted the data of 25.86 M words and used them for adaptation. In the recognition experiments, the baseline word error rate was 36.11%, whereas that with the acoustic and language model adaptation was 17.77%. The results demonstrated the effectiveness of the proposed method.

  • CoVR+: Design of Visual Effects for Promoting Joint Attention During Shared VR Experiences via a Projection of HMD User's View

    Akiyoshi SHINDO  Shogo FUKUSHIMA  Ari HAUTASAARI  Takeshi NAEMURA  

     
    PAPER

      Pubricized:
    2023/12/14
      Vol:
    E107-D No:3
      Page(s):
    374-382

    A user wearing a Head-Mounted Display (HMD) is likely to feel isolated when sharing virtual reality (VR) experiences with Non-HMD users in the same physical space due to not being able to see the real space outside the virtual world. This research proposes a method for an HMD user to recognize the Non-HMD users' gaze and attention via a projector attached to the HMD. In the proposed approach, the projected HMD user's view is filtered darker than default, and when Non-HMD users point controllers towards the projected view, the filter is removed from a circular area for both HMD and Non-HMD users indicating which region the Non-HMD users are viewing. We conducted two user studies showing that the Non-HMD users' gaze can be recognized with the proposed method, and investigated the preferred range for the alpha value and the size of the area for removing the filter for the HMD user.

  • Assigning Proximity Facilities for Gatherings

    Shin-ichi NAKANO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2023/11/27
      Vol:
    E107-D No:3
      Page(s):
    383-385

    In this paper we study a recently proposed variant of the r-gathering problem. An r-gathering of customers C to facilities F is an assignment A of C to open facilities F' ⊂ F such that r or more customers are assigned to each open facility. (Each facility needs enough number of customers to open.) Given an opening cost op(f) for each f∈F, and a connecting cost co(c,f) for each pair of c∈C and f∈F, the cost of an r-gathering A is max{maxc∈C{co(c, A(c))}, maxf∈F'{op(f)}}. The r-gathering problem consists of finding an r-gathering having the minimum cost. Assume that F is a set of locations for emergency shelters, op(f) is the time needed to prepare a shelter f∈F, and co(c,f) is the time needed for a person c∈C to reach assigned shelter f=A(c)∈F. Then an r-gathering corresponds to an evacuation plan such that each open shelter serves r or more people, and the r-gathering problem consists of finding an evacuation plan minimizing the evacuation time span. However in a solution above some person may be assigned to a farther open shelter although it has a closer open shelter. It may be difficult for the person to accept such an assignment for an emergency situation. Therefore, Armon considered the problem with one more additional constraint, that is, each customer should be assigned to a closest open facility, and gave a 9-approximation polynomial-time algorithm for the problem. We have designed a simple 3-approximation algorithm for the problem. The running time is O(r|C||F|).

  • DanceUnisoner: A Parametric, Visual, and Interactive Simulation Interface for Choreographic Composition of Group Dance

    Shuhei TSUCHIDA  Satoru FUKAYAMA  Jun KATO  Hiromu YAKURA  Masataka GOTO  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2023/11/27
      Vol:
    E107-D No:3
      Page(s):
    386-399

    Composing choreography is challenging because it involves numerous iterative refinements. According to our video analysis and interviews, choreographers typically need to imagine dancers' movements to revise drafts on paper since testing new movements and formations with actual dancers takes time. To address this difficulty, we present an interactive group-dance simulation interface, DanceUnisoner, that assists choreographers in composing a group dance in a simulated environment. With DanceUnisoner, choreographers can arrange excerpts from solo-dance videos of dancers throughout a three-dimensional space. They can adjust various parameters related to the dancers in real time, such as each dancer's position and size and each movement's timing. To evaluate the effectiveness of the system's parametric, visual, and interactive interface, we asked seven choreographers to use it and compose group dances. Our observations, interviews, and quantitative analysis revealed their successful usage in iterative refinements and visual checking of choreography, providing insights to facilitate further computational creativity support for choreographers.

  • MCGCN: Multi-Correlation Graph Convolutional Network for Pedestrian Attribute Recognition

    Yang YU  Longlong LIU  Ye ZHU  Shixin CEN  Yang LI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/11/29
      Vol:
    E107-D No:3
      Page(s):
    400-410

    Pedestrian attribute recognition (PAR) aims to recognize a series of a person's semantic attributes, e.g., age, gender, which plays an important role in video surveillance. This paper proposes a multi-correlation graph convolutional network named MCGCN for PAR, which includes a semantic graph, visual graph, and synthesis graph. We construct a semantic graph by using attribute features with semantic constraints. A graph convolution is employed, based on prior knowledge of the dataset, to learn the semantic correlation. 2D features are projected onto visual graph nodes and each node corresponds to the feature region of each attribute group. Graph convolution is then utilized to learn regional correlation. The visual graph nodes are connected to the semantic graph nodes to form a synthesis graph. In the synthesis graph, regional and semantic correlation are embedded into each other through inter-graph edges, to guide each other's learning and to update the visual and semantic graph, thereby constructing semantic and regional correlation. On this basis, we use a better loss weighting strategy, the suit_polyloss, to address the imbalance of pedestrian attribute datasets. Experiments on three benchmark datasets show that the proposed approach achieves superior recognition performance compared to existing technologies, and achieves state-of-the-art performance.

  • Hierarchical Latent Alignment for Non-Autoregressive Generation under High Compression Ratio

    Wang XU  Yongliang MA  Kehai CHEN  Ming ZHOU  Muyun YANG  Tiejun ZHAO  

     
    PAPER-Natural Language Processing

      Pubricized:
    2023/12/01
      Vol:
    E107-D No:3
      Page(s):
    411-419

    Non-autoregressive generation has attracted more and more attention due to its fast decoding speed. Latent alignment objectives, such as CTC, are designed to capture the monotonic alignments between the predicted and output tokens, which have been used for machine translation and sentence summarization. However, our preliminary experiments revealed that CTC performs poorly on document abstractive summarization, where a high compression ratio between the input and output is involved. To address this issue, we conduct a theoretical analysis and propose Hierarchical Latent Alignment (HLA). The basic idea is a two-step alignment process: we first align the sentences in the input and output, and subsequently derive token-level alignment using CTC based on aligned sentences. We evaluate the effectiveness of our proposed approach on two widely used datasets XSUM and CNNDM. The results indicate that our proposed method exhibits remarkable scalability even when dealing with high compression ratios.

  • A Novel Anomaly Detection Framework Based on Model Serialization

    Byeongtae PARK  Dong-Kyu CHAE  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/11/21
      Vol:
    E107-D No:3
      Page(s):
    420-423

    Recently, multivariate time-series data has been generated in various environments, such as sensor networks and IoT, making anomaly detection in time-series data an essential research topic. Unsupervised learning anomaly detectors identify anomalies by training a model on normal data and producing high residuals for abnormal observations. However, a fundamental issue arises as anomalies do not consistently result in high residuals, necessitating a focus on the time-series patterns of residuals rather than individual residual sizes. In this paper, we present a novel framework comprising two serialized anomaly detectors: the first model calculates residuals as usual, while the second one evaluates the time-series pattern of the computed residuals to determine whether they are normal or abnormal. Experiments conducted on real-world time-series data demonstrate the effectiveness of our proposed framework.

  • A New Pairing-Based Two-Round Tightly-Secure Multi-Signature Scheme with Key Aggregation

    Rikuhiro KOJIMA  Jacob C. N. SCHULDT  Goichiro HANAOKA  

     
    PAPER

      Pubricized:
    2023/09/20
      Vol:
    E107-A No:3
      Page(s):
    193-202

    Multi-signatures have seen renewed interest due to their application to blockchains, e.g., BIP 340 (one of the Bitcoin improvement proposals), which has triggered the proposals of several new schemes with improved efficiency. However, many previous works have a “loose” security reduction (a large gap between the difficulty of the security assumption and breaking the scheme) or depend on strong idealized assumptions such as the algebraic group model (AGM). This makes the achieved level of security uncertain when instantiated in groups typically used in practice, and it becomes unclear for developers how secure a given scheme is for a given choice of security parameters. Thus, this leads to the question “what kind of schemes can we construct that achieves tight security based on standard assumptions?”. In this paper, we show a simple two-round tightly-secure pairing-based multi-signature scheme based on the computation Diffie-Hellman problem in the random oracle model. This proposal is the first two-round multi-signature scheme that achieves tight security based on a computational assumption and supports key aggregation. Furthermore, our scheme reduce the signature bit size by 19% compared with the shortest existing tightly-secure DDH-based multi-signature scheme. Moreover, we implemented our scheme in C++ and confirmed that it is efficient in practice; to complete the verification takes less than 1[ms] with a total (computational) signing time of 13[ms] for under 100 signers. The source code of the implementation is published as OSS.

281-300hit(25216hit)