Stergios STERGIOU Dimitris VOUDOURIS George PAPAKONSTANTINOU
In this work, a novel Multiple Valued Exclusive-Or Sum Of Products (MVESOP) minimization formulation is analyzed and an algorithm is presented that detects minimum MVESOP expressions when the weight of the function is less than eight. A heuristic MVESOP algorithm based on a novel cube transformation operation is then presented. Experimental results on MCNC benchmarks and randomly generated functions indicate that the algorithm matches or outperforms the quality of the state of the art in ESOP minimizers.
Seiichi NAKAMORI Raquel CABALLERO-AGUILA Aurora HERMOSO-CARAZO Josefa LINARES-PEREZ
This paper considers the least-squares linear estimation problem of signals from randomly delayed observations when the additive white noise is correlated with the signal. The delay values are treated as unknown variables, modelled by a binary white noise with values zero or one; these values indicate that the measurements arrive in time or they are delayed by one sampling time. A recursive one-stage prediction and filtering algorithm is obtained by an innovation approach and do not use the state-space model of the signal. It is assumed that both, the autocovariance functions of the signal and the crosscovariance function between the signal and the observation noise are expressed in a semi-degenerate kernel form; using this information and the delay probabilities, the estimators are recursively obtained.
Kwangmin HYUN Dongweon YOON Sang Kyu PARK
General closed-form expressions are derived and analyzed for the exact bit error rate (BER) performance of the arbitrary rectangular Gray coded QAM signal in conjunction with maximal-ratio combining (MRC) diversity on frequency non-selective slow m-distributed Nakagami fading channel. The analyses consider four channel models, independent and identical, independent and nonidentical, identical but correlated, and arbitrary correlated fading. Numerical results demonstrate error performance improvement with the use of MRC diversity reception. The new expressions presented here are suitable for evaluating various cases of practical interest on wireless communication channels.
Seiichi NAKAMORI Raquel CABALLERO-AGUILA Aurora HERMOSO-CARAZO Josefa LINARES-PEREZ
This paper presents recursive algorithms for the least mean-squared error linear filtering and fixed-interval smoothing estimators, from uncertain observations for the case of white and white plus coloured observation noises. The estimators are obtained by an innovation approach and do not use the state-space model, but only covariance information about the signal and the observation noises, as well as the probability that the signal exists in the observed values. Therefore the algorithms are applicable not only to signal processes that can be estimated by the conventional formulation using the state-space model but also to those for which a realization of the state-space model is not available. It is assumed that both the signal and the coloured noise autocovariance functions are expressed in a semi-degenerate kernel form. Since the semi-degenerate kernel is suitable for expressing autocovariance functions of non-stationary or stationary signal processes, the proposed estimators provide estimates of general signal processes.
Cryptography and Coding Theory are closely related in many respects. Recently, the problem of "decoding Reed Solomon codes" (also known as "polynomial reconstruction") was suggested as an intractability assumption to base the security of protocols on. This has initiated a line of cryptographic research exploiting the rich algebraic structure of the problem and its variants. In this paper we give a short overview of the recent works in this area as well as list directions and open problems in Polynomial Reconstruction Based Cryptography.
Daniela N. DJONIN Ashok K. KARMOKAR Dejan V. DJONIN Vijay K. BHARGAVA
We propose adaptive variable-rate constant-power scheme for ad hoc wireless networks, employing the modification of Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. Potential improvements in throughput and back-off probability are presented for different system parameters.
Yoong-Choon CHANG M. Salim BEG
Video transmission over Terrestrial Trunked Radio (TETRA) mobile channel employing MPEG-4 visual coding standard is proposed in this paper. Detail parameters of the proposed systems are discussed in this paper. Performance of the proposed systems was evaluated in Average Peak Signal to Noise Ratio (APSNR) versus Signal to Noise Ratio (SNR) and Bit Error Rate (BER). In particular, the video quality that can be achieved at different channel conditions and employing different combinations of MPEG-4 visual error resilient tools is presented in this paper. Results obtained show that higher video bitrate does not necessarily lead to higher video quality at the receiver as the received video quality depends on the bit error pattern or the number of error free video packets.
Bart de SCHEPPER Bart STEYAERT Sabine WITTEVRONGEL Herwig BRUNEEL
Classical studies of Asynchronous Transfer Mode (ATM) switching elements and in particular the buffer behavior of the Shared Buffer Memory (SBM), assume that all read and write operations of cells to, respectively from, the SBM are executed simultaneously. However, in a real switching element, the inlets (outlets) are scanned sequentially for arriving (departing) cells during the so-called input (output) cycle. Furthermore, the input and output cycles are intermingled, each read operation being followed by a write operation. This is referred to as the Timeslot Interchange Mechanism (TIM). In this paper, we present the analysis of a queueing model that includes the TIM. We model the cell arrival processes on the inlets of the switching element as independent Bernoulli arrival processes. Moreover, we assume that cells are routed from the inlets to the outlets of the switching element according to an independent and uniform process, i.e., the destinations of consecutive cell arrivals on any given inlet are independent and for a given cell all destinations are equiprobable. Under these assumptions, we will derive expressions for the probability generating functions of the queue length in an individual routing group (a logical queue that contains all cells scheduled for the same destination), the (total) queue length in the SBM, and the cell waiting time. From these results, expressions for the mean values and the tail distributions of these quantities are calculated, and the influence of the TIM on the buffer behavior is studied through comparison with a model where all read and write operations occur simultaneously.
Mitsuji MUNEYASU Yumi WAKASUGI Ken'ichi KAGAWA Kensaku FUJII Takao HINAMOTO
A multiple channel active noise control (ANC) system with several secondary sources, error sensors, and reference sensors has been used for complicated noise fields. Centralized multiple channel ANC systems have been proposed, however implementation of such systems becomes difficult according to increase of control points. Distributed multiple channel ANC systems which have more than a controller are considered. This paper proposes a new implementation of distributed multiple channel ANC systems based on simultaneous equations methods. In the proposed algorithm, communications between controllers are permitted to distribute the computational burden and to improve the performance of noise reduction. This algorithm shows good performances for noise cancellation and tracking of changes in the error paths.
Masaki KUREMATSU Takamasa IWADE Naomi NAKAYA Takahira YAMAGUCHI
In this paper, we describe how to exploit a machine-readable dictionary (MRD) and domain-specific text corpus in supporting the construction of domain ontologies that specify taxonomic and non-taxonomic relationships among given domain concepts. In building taxonomic relationships (hierarchical structure) of domain concepts, some hierarchical structure can be extracted from a MRD with marked subtrees that may be modified by a domain expert, using matching result analysis and trimmed result analysis. In building non-taxonomic relationships (specification templates) of domain concepts, we construct concept specification templates that come from pairs of concepts extracted from text corpus, using WordSpace and an association rule algorithm. A domain expert modifies taxonomic and non-taxonomic relationships later. Through case studies with "the Contracts for the International Sales of Goods (CISG)" and "XML Common Business Library (xCBL)", we make sure that our system can work to support the process of constructing domain ontologies with a MRD and text corpus.
Riichiro NAGAREDA Kazuhiko FUKAWA Hiroshi SUZUKI
This paper proposes a new correction technique for a linear amplification with nonlinear components (LINC) transmitter. The technique, which is based on the minimum mean squared error (MMSE) criterion, estimates the gain and phase imbalance between the two amplifier branches. With information on the estimation, the imbalance is offset by controlling the amplitude and phase of the input signal that is fed into one of the two amplifiers. Computer simulations with a DS-CDMA system demonstrate that this method can compensate for the imbalance and sufficiently suppress the out-of-band distortion spectrum.
Zhibin PAN Koji KOTANI Tadahiro OHMI
Conventional vector quantization (VQ) encoding method by full search (FS) is very heavy computationally but it can reach the best PSNR. In order to speed up the encoding process, many fast search methods have been developed. Base on the concept of multi-resolutions, the FS equivalent fast search methods using mean-type pyramid data structure have been proposed already in. In this Letter, an enhanced sum pyramid data structure is suggested to improve search efficiency further, which benefits from (1) exact computing in integer form, (2) one more 2-dimensional new resolution and (3) an optimal pair selecting way for constructing the new resolution. Experimental results show that a lot of codewords can be rejected efficiently by using this added new resolution that features lower dimensions and earlier difference check order.
Naihua YUAN Anh DINH Ha H. NGUYEN
A time-domain equalization (TEQ) algorithm is presented to shorten the effective channel impulse response to increase the transmission efficiency of the 54 Mbps IEEE 802.11a orthogonal frequency division multiplexing (OFDM) system. In solving the linear equation Aw = B for the optimum TEQ coefficients, A is shown to be Hermitian and positive definite. The LDLT and LU decompositions are used to factorize A to reduce the computational complexity. Simulation results show high performance gains at a data rate of 54 Mbps with moderate orders of TEQ finite impulse response (FIR) filter. The design and implementation of the algorithm in field programmable gate array (FPGA) are also presented. The regularities among the elements of A are exploited to reduce hardware complexity. The LDLT and LU decompositions are combined in hardware design to find the TEQ coefficients in less than 4 µs. To compensate the effective channel impulse response, a radix-4 pipeline fast Fourier transform (FFT) is implemented in performing zero forcing equalization. The hardware implementation information is provided and simulation results are compared to mathematical values to verify the functionalities of the chips running at 54 Mbps.
Martin BURGER Stanley J. OSHER Eli YABLONOVITCH
This paper provides a review on the optimal design of photonic bandgap structures by inverse problem techniques. An overview of inverse problems techniques is given, with a special focus on topology design methods. A review of first applications of inverse problems techniques to photonic bandgap structures and waveguides is given, as well as some model problems, which provide a deeper insight into the structure of the optimal design problems.
Yonghui LI Branka VUCETIC Qishan ZHANG
Channel estimation is one of the key technologies in mobile communications. Channel estimation is critical in providing high data rate services and to overcome fast fading in very high-speed mobile communications. This paper presents a novel channel estimation based on hybrid spreading of I and Q signals (CEHS). Simulation results show that it can effectively mitigate the influence of fast fading and enable to provide high data rates for very high speed mobile systems.
Satoshi UEMURA Miki HASEYAMA Hideo KITAJIMA
This letter presents a significant property of the mapping parameters that play a central role to represent a given signal in Fractal Interpolation Functions (FIF). Thanks to our theoretical analysis, it is derived that the mapping parameters required to represent a given signal are also applicable to represent the upsampled signal of a given one. Furthermore, the upsampled signal obtained by using the property represents the self-affine property more distinctly than the given signal. Experiments show the validity and usefulness of the significant property.
Francisco MESEGUER Hernan MIGUEZ
Colloidal crystallization is one of the most promising approaches to the fabrication of photonic crystals with periodicity at the submicron length scale. Several approaches have been explored to enhance the optical quality of these materials and, at the same time, to integrate these materials in substrates of interest in current technology. In this paper we review some of the most promising advances recently made in this direction, as well as some achievements towards the creation of new colloidal structures.
The descriptional complexity of iterative arrays (IAs) is studied. Iterative arrays are a parallel computational model with a sequential processing of the input. It is shown that IAs when compared to deterministic finite automata or pushdown automata may provide savings in size which are not bounded by any recursive function, so-called non-recursive trade-offs. Additional non-recursive trade-offs are proven to exist between IAs working in linear time and IAs working in real time. Furthermore, the descriptional complexity of IAs is compared with cellular automata (CAs) and non-recursive trade-offs are proven between two restricted classes. Finally, it is shown that many decidability questions for IAs are undecidable and not semidecidable.
Satoshi UEMURA Miki HASEYAMA Hideo KITAJIMA
In this paper, a novel description method of the contour of a shape using extended fractal interpolation functions (EFIFs) is presented. Although the scope of application of traditional FIFs has been limited to cases in which a given signal is represented by a single-valued function, the EFIFs derived by the introduction of a new parameter can describe a multiple-valued signal such as the contour of a shape with a high level of accuracy. Furthermore, the proposed description method possesses the useful property that once a given contour has been modeled by the proposed description method, the shape can be easily expanded at an arbitrary expansion rate. Experimental results show the effectiveness and usefulness of the proposed description method for representing contours.
Lan ZHANG Masataka MORIYA Tadayuki KOBAYASHI Masashi MUKAIDA Toshinari GOTO
In-plane-aligned a-axis-oriented YBa2Cu3O7-δ (YBCO) thin films are attractive for the formation of planar intrinsic Josephson devices. In this study, these films were deposited by dc sputtering on LaSrGaO4 (LSGO) (100) substrates and the dependence of the characteristics on the deposition conditions was investigated. In-plane-aligned a-axis-oriented YBCO thin films were successfully grown in the substrate temperature range of 555-615. With the temperature gradient method, it was seen that the critical temperature of the film increased to 81 K. The current-voltage characteristic along the c-axis exhibited clear multibranch structures. These results indicate that ion-cleaning of the substrate surface broadens the growth temperature range of these films and planar intrinsic Josephson devices can be fabricated from these films.