The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] macro(61hit)

1-20hit(61hit)

  • Terahertz Radiations and Switching Phenomena of Intrinsic Josephson Junctions in High-Temperature Superconductors: Josephson Phase Dynamics in Long- and Short-Ranged Interactions Open Access

    Itsuhiro KAKEYA  

     
    INVITED PAPER

      Pubricized:
    2022/12/07
      Vol:
    E106-C No:6
      Page(s):
    272-280

    Studies on intrinsic Josephson junctions (IJJs) of cuprate superconductors are reviewed. A system consisting of a few IJJs provides phenomena to test the Josephson phase dynamics and its interaction between adjacent IJJs within a nanometer scale, which is unique to cuprate superconductors. Quasiparticle density of states, which provides direct information on the Cooper-pair formation, is also revealed in the system. In contrast, Josephson plasma emission, which is an electromagnetic wave radiation in the sub-terahertz frequency range from an IJJ stack, arises from the synchronous phase dynamics of hundreds of IJJs coupled globally. This review summarizes a wide range of physical phenomena in IJJ systems having capacitive and inductive couplings with different nanometer and micrometer length scales, respectively.

  • Macro Cell Switching of Transmit Antennas in Distributed Antenna Transmission

    Takahito TSUKAMOTO  Go OTSURU  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/10/15
      Vol:
    E105-B No:3
      Page(s):
    302-308

    In this paper, a macro cell switching scheme for distributed antennas is proposed. In conventional distributed antenna transmission (DAT), the macro cell to which each antenna belongs is fixed. Though a cell-free system has been investigated because of its higher system throughput, the implementation cost of front-hauls can be excessive. To increase the flexibility of resource allocation in the DAT with moderate front-haul complexity, we propose the macro cell switching of distributed antennas (DAs). In the proposed scheme, DAs switch their attribution macro cells depending on the amount of pre-assigned connections. Numerical results obtained through computer simulation show that the proposed scheme realizes a better system throughput than the conventional system, especially when the number of user equipments (UEs) is smaller and the distance between DAs are larger.

  • Evaluation of Side-Channel Leakage Simulation by Using EMC Macro-Model of Cryptographic Devices

    Yusuke YANO  Kengo IOKIBE  Toshiaki TESHIMA  Yoshitaka TOYOTA  Toshihiro KATASHITA  Yohei HORI  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2020/08/06
      Vol:
    E104-B No:2
      Page(s):
    178-186

    Side-channel (SC) leakage from a cryptographic device chip is simulated as the dynamic current flowing out of the chip. When evaluating the simulated current, an evaluation by comparison with an actual measurement is essential; however, it is difficult to compare them directly. This is because a measured waveform is typically the output voltage of probe placed at the observation position outside the chip, and the actual dynamic current is modified by several transfer impedances. Therefore, in this paper, the probe voltage is converted into the dynamic current by using an EMC macro-model of a cryptographic device being evaluated. This paper shows that both the amplitude and the SC analysis (correlation power analysis and measurements to disclosure) results of the simulated dynamic current were evaluated appropriately by using the EMC macro-model. An evaluation confirms that the shape of the simulated current matches the measured one; moreover, the SC analysis results agreed with the measured ones well. On the basis of the results, it is confirmed that a register-transfer level (RTL) simulation of the dynamic current gives a reasonable estimation of SC traces.

  • A Novel Radio Resource Optimization Scheme in Closed Access Femtocell Networks Based on Bat Algorithm Open Access

    I Wayan MUSTIKA  Nifty FATH  Selo SULISTYO  Koji YAMAMOTO  Hidekazu MURATA  

     
    INVITED PAPER

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    660-669

    Femtocell has been considered as a key promising technology to improve the capacity of a cellular system. However, the femtocells deployed inside a macrocell coverage are potentially suffered from excessive interference. This paper proposes a novel radio resource optimization in closed access femtocell networks based on bat algorithm. Bat algorithm is inspired by the behavior of bats in their echolocation process. While the original bat algorithm is designed to solve the complex optimization problem in continuous search space, the proposed modified bat algorithm extends the search optimization in a discrete search space which is suitable for radio resource allocation problem. The simulation results verify the convergence of the proposed optimization scheme to the global optimal solution and reveal that the proposed scheme based on modified bat algorithm facilitates the improvement of the femtocell network capacity.

  • Separating Predictable and Unpredictable Flows via Dynamic Flow Mining for Effective Traffic Engineering Open Access

    Yousuke TAKAHASHI  Keisuke ISHIBASHI  Masayuki TSUJINO  Noriaki KAMIYAMA  Kohei SHIOMOTO  Tatsuya OTOSHI  Yuichi OHSITA  Masayuki MURATA  

     
    PAPER-Internet

      Pubricized:
    2017/08/07
      Vol:
    E101-B No:2
      Page(s):
    538-547

    To efficiently use network resources, internet service providers need to conduct traffic engineering that dynamically controls traffic routes to accommodate traffic change with limited network resources. The performance of traffic engineering (TE) depends on the accuracy of traffic prediction. However, the size of traffic change has been drastically increasing in recent years due to the growth in various types of network services, which has made traffic prediction difficult. Our approach to tackle this issue is to separate traffic into predictable and unpredictable parts and to apply different control policies. However, there are two challenges to achieving this: dynamically separating traffic according to predictability and dynamically controlling routes for each separated traffic part. In this paper, we propose a macroflow-based TE scheme that uses different routing policies in accordance with traffic predictability. We also propose a traffic-separation algorithm based on real-time traffic analysis and a framework for controlling separated traffic with software-defined networking technology, particularly OpenFlow. An evaluation of actual traffic measured in an Internet2 network shows that compared with current TE schemes the proposed scheme can reduce the maximum link load by 34% (at the most congested time) and the average link load by an average of 11%.

  • A Stackelberg Game Based Pricing and User Association for Spectrum Splitting Macro-Femto HetNets

    Bo GU  Zhi LIU  Cheng ZHANG  Kyoko YAMORI  Osamu MIZUNO  Yoshiaki TANAKA  

     
    PAPER-Network

      Pubricized:
    2017/07/10
      Vol:
    E101-B No:1
      Page(s):
    154-162

    The demand for wireless traffic is increasing rapidly, which has posed huge challenges to mobile network operators (MNOs). A heterogeneous network (HetNet) framework, composed of a marcocell and femtocells, has been proved to be an effective way to cope with the fast-growing traffic demand. In this paper, we assume that both the macrocell and femtocells are owned by the same MNO, with revenue optimization as its ultimate goal. We aim to propose a pricing strategy for macro-femto HetNets with a user centric vision, namely, mobile users would have their own interest to make rational decisions on selecting between the macrocell and femtocells to maximize their individual benefit. We formulate a Stackelberg game to analyze the interactions between the MNO and users, and obtain the equilibrium solution for the Stackelberg game. Via extensive simulations, we evaluate the proposed pricing strategy in terms of its efficiency with respect to the revenue optimization.

  • Removal of Salt-and-Pepper Noise Using a High-Precision Frequency Analysis Approach

    Masaya HASEGAWA  Kazuki SAKASHITA  Kousei UCHIKOSHI  Shigeki HIROBAYASHI  Tadanobu MISAWA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2017/01/24
      Vol:
    E100-D No:5
      Page(s):
    1097-1105

    A digital image is often deteriorated by impulse noise that may occur during processes such as transmission. An impulse noise converts the pixel data in the image into black (0) or white (255) values at a random frequency and is also called salt-and-pepper noise. In this paper, we identify the details of pixels that have been damaged by impulse noise by analyzing the frequency of the noisy image using non-harmonic analysis (NHA). From experimental results, we can confirm that this method shows superior performance compared to the recent PSNR denoising method. In addition, we show that the proposed method is particularly superior in eliminating impulse noise in images with high noise rates.

  • Interference Mitigation Framework Based on Interference Alignment for Femtocell-Macrocell Two Tier Cellular Systems

    Mohamed RIHAN  Maha ELSABROUTY  Osamu MUTA  Hiroshi FURUKAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:3
      Page(s):
    467-476

    This paper presents a downlink interference mitigation framework for two-tier heterogeneous networks, that consist of spectrum-sharing macrocells and femtocells*. This framework establishes cooperation between the two tiers through two algorithms, namely, the restricted waterfilling (RWF) algorithm and iterative reweighted least squares interference alignment (IRLS-IA) algorithm. The proposed framework models the macrocell-femtocell two-tier cellular system as an overlay cognitive radio system in which the macrocell system plays the role of the primary user (PU) while the femtocell networks play the role of the cognitive secondary users (SUs). Through the RWF algorithm, the macrocell basestation (MBS) cooperates with the femtocell basestations (FBSs) by releasing some of its eigenmodes to the FBSs to do their transmissions even if the traffic is heavy and the MBS's signal to noise power ratio (SNR) is high. Then, the FBSs are expected to achieve a near optimum sum rate through employing the IRLS-IA algorithm to mitigate both the co-tier and cross-tier interference at the femtocell users' (FUs) receivers. Simulation results show that the proposed IRLS-IA approach provides an improved sum rate for the femtocell users compared to the conventional IA techniques, such as the leakage minimization approach and the nuclear norm based rank constraint rank minimization approach. Additionally, the proposed framework involving both IRLS-IA and RWF algorithms provides an improved total system sum rate compared with the legacy approaches for the case of multiple femtocell networks.

  • Dynamic Macro-Based Heuristic Planning through Action Relationship Analysis

    Zhuo JIANG  Junhao WEN  Jun ZENG  Yihao ZHANG  Xibin WANG  Sachio HIROKAWA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2014/10/23
      Vol:
    E98-D No:2
      Page(s):
    363-371

    The success of heuristic search in AI planning largely depends on the design of the heuristic. On the other hand, previous experience contains potential domain information that can assist the planning process. In this context, we have studied dynamic macro-based heuristic planning through action relationship analysis. We present an approach for analyzing the action relationship and design an algorithm that learns macros in solved cases. We then propose a dynamic macro-based heuristic that appropriately reuses the macros rather than immediately assigning them to domains. The above ideas are incorporated into a working planning system called Dynamic Macro-based Fast Forward planner. Finally, we evaluate our method in a series of experiments. Our method effectively optimizes planning since it reduces the result length by an average of 10% relative to the FF, in a time-economic manner. The efficiency is especially improved when invoking an action consumes time.

  • Fair Partitioning of the Downlink Resources of an OFDMA-Based Multi-User Multi-Tier Cellular Network Using Fractional Frequency Reuse

    Akindele Segun AFOLABI  Erdenebileg MUNKHBAT  Yumi TAKAKI  Chikara OHTA  Hisashi TAMAKI  Yoshizo TANAKA  Takashi YAMAMOTO  Yoji OKADA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:10
      Page(s):
    3353-3357

    Orthogonal Frequency Division Multiple Access (OFD-MA) is a leading air interface candidate for future generation cellular networks. However, if deployed in a multi-user multi-tier cellular system, it is important to fairly share radio resources such as transmission power and sub-carriers among co-tier and cross-tier users. This paper focuses on a mathematical formulation of cell inner-zone/outer-zone radio resource partitioning variables and considers the case of an FFR-based macrocell underlaid with femtocell. By applying an exhaustive search procedure on the developed formulation, we determine the optimal radio resource partitioning parameter values from the perspectives of macrocell user fairness and femtocell throughput maximization.

  • A Closed-Loop Macro Diversity Scheme in Cooperative Multi-Point Downlink Transmission Systems

    Yingquan ZOU  Chunguo LI  Luxi YANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2667-2671

    In this paper, the joint optimization issue of the cooperative precoder design is investigated for the transmission from the cooperative multi-point system to one mobile terminal. Based on the mean squared error minimization criterion, the problem is established for the cooperative precoder design. Unfortunately, this problem cannot be solved due to the block diagonal structure of the whole precoding matrix resulting from the fact that there is no data exchange among multiple base stations. In order to tackle this difficulty, the original problem is converted into an equivalent problem by stacking all of the nonzero entries in the block diagonal matrix into a long column vector. With the equivalent problem, the optimum solution is obtained in a closed-form expression by using the Lagrangian multiplier method. Numerical simulations illustrate the effectiveness of the proposed scheme in terms of bit error rate and spectral efficiency.

  • Dynamic Channel Adaptation for IP Based Split Spectrum Femto/Macro Cellular Systems

    Kyungmin PARK  Chungha KOH  Kangjin YOON  Youngyong KIM  

     
    LETTER

      Vol:
    E94-B No:3
      Page(s):
    694-697

    In femto/macro cellular networks, the stability and fairness problems caused by the unplanned and random characteristic of femtocells must be solved. By applying queueing theory in IP based femto/macro cellular networks, we found the stability condition, and described two kinds of cell section policies of users. As a main contribution, we provided the adaptive channel distribution algorithm which minimizes the average packet sojourn time at transmitting systems and keeps the whole systems stable and fair among cells. Through experiments in various environments, we analyzed the influence of channel reuse factor, cell selection policies, and the number of femtocells on system performance.

  • Design and Analysis on Macro Diversity Scheme for Broadcast Services in Mobile Cellular Systems

    Yang LIU  Hui ZHAO  Yunchuan YANG  Wenbo WANG  Kan ZHENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:11
      Page(s):
    3113-3120

    Recently, broadcast services are introduced in cellular networks and macro diversity is an effective way to combat fading. In this paper, we propose a kind of distributed space-time block codes (STBCs) for macro diversity which is constructed from the total antennas of multiple cooperating base stations, and all the antennas form an equivalent multiple input multiple output (MIMO) system. This code is termed High-Dimension-Full-Rate-Quasi-Orthogonal STBC (HDFR-QOSTBC) which can be characterized as: (1) It can be applied with any number of transmit antennas especially when the number of transmit antennas is large; (2) The code is with full transmit rate of one; (3) The Maximum Likelihood (ML) decoding complexity of this code is controllable and limited to Nt/2-symbol-decodable for total Nt transmit antennas. Then, we completely analyze the structure of the equivalent channel for the kind of codes and reveal a property that the eigenvectors of the equivalent channel are constant and independent from the channel realization, and this characteristic can be exploited for a new transmission structure with single-symbol linear decoder. Furthermore, we analyze different macro diversity schemes and give a performance comparison. The simulation results show that the proposed scheme is practical for the broadcast systems with significant performance improvement comparing with soft-combination and cyclic delay diversity (CDD) methods.

  • A New LDMOS Transistor Macro-Modeling for Accurately Predicting Bias Dependence of Gate-Overlap Capacitance

    Takashi SAITO  Toshiki KANAMOTO  Saiko KOBAYASHI  Nobuhiko GOTO  Takao SATO  Hitoshi SUGIHARA  Hiroo MASUDA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:9
      Page(s):
    1605-1611

    We have developed a macro model, which allows us to describe precise LDMOS DC/AC characteristics. Characterization of anomalous gate input capacitance is the key issue in the LDMOS model development. We have newly employed a T-type distributed RC scheme for gate overlapped LDMOS drift region. The bias dependent resistance and capacitance are modeled independently in Verilog-A as R-model and PMOS-capacitance. The dividing factor of the distributed R is introduced to reflect the shield effect of the gate overlap capacitance. Comparison between the new model and measurement results has proven that the developed macro model reproduces accurately not only the gate input capacitance, but also DC characteristics.

  • Investigation of Inter-Node B Macro Diversity for Single-Carrier Based Radio Access in Evolved UTRA Uplink

    Hiroyuki KAWAI  Akihito MORIMOTO  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:1
      Page(s):
    125-134

    This paper investigates the gain of inter-Node B macro diversity for a scheduled-based shared channel using single-carrier FDMA radio access in the Evolved UTRA (UMTS Terrestrial Radio Access) uplink based on system-level simulations. More specifically, we clarify the gain of inter-Node B soft handover (SHO) with selection combining at the radio frame length level (=10 msec) compared to that for hard handover (HHO) for a scheduled-based shared data channel, considering the gains of key packet-specific techniques including channel-dependent scheduling, adaptive modulation and coding (AMC), hybrid automatic repeat request (ARQ) with packet combining, and slow transmission power control (TPC). Simulation results show that the inter-Node B SHO increases the user throughput at the cell edge by approximately 10% for a short cell radius such as 100-300 m due to the diversity gain from a sudden change in other-cell interference, which is a feature specific to full scheduled-based packet access. However, it is also shown that the gain of inter-Node B SHO compared to that for HHO is small in a macrocell environment when the cell radius is longer than approximately 500 m due to the gains from hybrid ARQ with packet combining, slow TPC, and proportional fairness based channel-dependent scheduling.

  • Inter-Cell Resource Coordination Utilizing Macroscopic Diversity for an Uplink OFDMA System

    Sungjin LEE  Sanghoon LEE  Gyetae GIL  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:10
      Page(s):
    3256-3259

    An ICI (Inter-Cell Interference) mitigation algorithm for exploiting macroscopic diversity for an up-link OFDMA (Orthogonal Frequency Division Multiple Access) system is proposed. To reduce the influence of carrier collision, the order of resource allocation is coordinated based on the location of each MS (Mobile Station) and the associated carrier group. This consideration significantly reduces ICI and enhances throughput at the boundary region.

  • An Efficient Algorithm for RTL Power Macro-Modeling and Library Building

    Masaaki OHTSUKI  Masato KAWAI  Masahiro FUKUI  

     
    PAPER

      Vol:
    E92-C No:4
      Page(s):
    500-507

    Accompanying with the popularization of portable equipments, and the rapid growth of the size of the electric systems, efficient low power design methodologies have been highly required. To satisfy these requests, a high accurate and high efficient power analysis in higher abstraction level is very important. The design environment is composed by efficient algorithms of power modeling, power library building, and data extracting. Those components of the environment should be balanced for the total efficiency and accuracy. We have proposed a new efficient power modeling environment which uses a look-up table (LUT). It reduces the size of the LUT drastically, compared to conventional algorithms. It makes the power analysis and library building high efficient. The experimental results show that our approach reduces the computation time to build the library to one tenth while keeping the accuracy of the power analysis. The RMS error and the largest error has been less than 8.30%, 59.16%, respectively.

  • Efficient Flexible Macroblock Ordering Technique

    Kostas PSANNIS  Yutaka ISHIBASHI  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E91-B No:8
      Page(s):
    2692-2701

    The H.264/AVC standard provides several new error-resilient features to enable the reliable transmission of compressed video signals over lossy packet networks. Flexible Macroblock Ordering (FMO) is one of the most interesting resilient features within the H.264/AVC standard. Unlike former standards, in which slices were constructed out of consecutive raster scan macroblocks, FMO suggests new slices composed of spatially distributed Macroblocks (MBs), and organized in a mixed-up fashion. H.264/AVC specifies seven types of FMO. The standard defines also an explicit FMO type (Type 6), which allows explicitly assignment of each MB within the frame to any available slice groups. Therefore new FMO types can be used and integrated into H264/AVC without violating the standard. In this paper we propose a new Explicit Chessboard-Wipe (ECW) Flexible Macroblocks Ordering (FMO) technique, which outperforms all other FMO types. The new ECW ordering results in effective error scattering which maximizes the number of correctly received macroblocks located around corrupted macroblocks, leading to better error concealment. Performance evaluations demonstrate that the proposed Explicit FMO approach outperforms all the FMO types. Both subjective and objective visual quality comparative study has been also carried out in order to validate the proposed approach.

  • On the Performance of MIMO Macrodiversity Transmission with Limited Feedback

    Erlin ZENG  Zhimeng ZHONG  Shihua ZHU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:6
      Page(s):
    2033-2036

    In this letter, we study the performance of the multiple-input multiple-output macrodiversity transmission with limited feedback. We modify the model of the quantized channel by Jindal [9] such that the phase ambiguity in the vector quantization procedure can be characterized. Using the modified model, we show that the conventional limited feedback methods cannot obtain the macrodiversity gain even with asymptotically large codebook size, and that the macrodiversity gain can be attained by adding only one bit of phase feedback.

  • Automatic Synthesis of Cost Effective FFT/IFFT Cores for VLSI OFDM Systems

    Nicola E. L'INSALATA  Sergio SAPONARA  Luca FANUCCI  Pierangelo TERRENI  

     
    PAPER

      Vol:
    E91-C No:4
      Page(s):
    487-496

    This work presents an FFT/IFFT core compiler particularly suited for the VLSI implementation of OFDM communication systems. The tool employs an architecture template based on the pipelined cascade principle. The generated cores support run-time programmable length and transform type selection, enabling seamless integration into multiple mode and multiple standard terminals. A distinctive feature of the tool is its accuracy-driven configuration engine which automatically profiles the internal arithmetic and generates a core with minimum operands bit-width and thus minimum circuit complexity. The engine performs a closed-loop optimization over three different internal arithmetic models (fixed-point, block floating-point and convergent block floating-point) using the numerical accuracy budget given by the user as a reference point. The flexibility and re-usability of the proposed macrocell are illustrated through several case studies which encompass all current state-of-the-art OFDM communications standards (WLAN, WMAN, xDSL, DVB-T/H, DAB and UWB). Implementations results of the generated macrocells are presented for two deep sub-micron standard-cells libraries (65 and 90 nm) and commercially available FPGA devices. When compared with other tools for automatic FFT core generation, the proposed environment produces macrocells with lower circuit complexity expressed as gate count and RAM/ROM bits, while keeping the same system level performance in terms of throughput, transform size and numerical accuracy.

1-20hit(61hit)