The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] metal(132hit)

41-60hit(132hit)

  • An EM Absorber and Frequency Selective Shielding by Use of Metal Fiber Array Composites

    Takanori TSUTAOKA  Kenichi HATAKEYAMA  

     
    LETTER

      Vol:
    E93-B No:7
      Page(s):
    1858-1861

    The construction of EM absorber and frequency selective shielding has been investigated by using two dimensional metal fiber array (MFA) composites. The MFA composite shows a resonant type frequency dispersion in the complex relative permittivity spectra (εr = εr' - jεr") having a negative εr' region. The frequency characteristics of the conventional ferrite-rubber EM absorber can be improved by combining with the negative permittivity property of the MFA composite. A frequency selective shielding can be achieved by the evanescent EM wave propagation in the layered MFA composite structure.

  • A 5 GHz Band Low Noise and Wide Tuning Range Si-CMOS VCO with a Novel Varactors Pair Circuit

    Tuan Thanh TA  Suguru KAMEDA  Tadashi TAKAGI  Kazuo TSUBOUCHI  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    755-762

    In this paper, a fully integrated 5 GHz voltage controlled oscillator (VCO) is presented. The VCO is designed with 0.18 µm silicon complementary metal oxide semiconductor (Si-CMOS) process. To achieve low phase noise, a novel varactors pair circuit is proposed to cancel effects of capacitance fluctuation that makes harmonic currents which increase phase noise of VCO. The VCO with the proposed varactor circuit has tuning range from 5.1 GHz to 6.1 GHz (relative value of 17.9%) and phase noise of lower than -110.8 dBc/Hz at 1 MHz offset over the full tuning range. Figure-of-merit-with-tuning-range (FOMT) of the proposed VCO is -182 dBc/Hz.

  • Electrical and Mechanical Characteristics of Au-, Pt-, and Pd-Doped Carbon Thin Films

    Mitsunori YABE  Shigeru UMEMURA  Shigeru HIRONO  

     
    BRIEF PAPER-Electromechanical Devices and Components

      Vol:
    E93-C No:4
      Page(s):
    527-530

    To achieve conductive and wear-durable carbon thin films by metal doping, we deposited Au-, Pt-, and Pd-doped carbon thin films by RF sputtering, and evaluated the dopant concentrations, resistivity, and scratch hardness. Among the doped films, the Pt-doped film with low Pt concentration was most suitable from a practical perspective.

  • Fast Shape Optimization of Metalization Patterns for Power-MOSFET Based Driver

    Bo YANG  Shigetoshi NAKATAKE  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E92-A No:12
      Page(s):
    3052-3060

    This paper addresses the problem of optimizing metalization patterns of back-end connections for the power-MOSFET based driver since the back-end connections tend to dominate the on-resistance Ron of the driver. We propose a heuristic algorithm to seek for better geometric shapes for the patterns targeting at minimizing Ron and at balancing the current distribution. In order to speed up the analysis, the equivalent resistance network of the driver is modified by inserting ideal switches to avoid repeatedly inverting the admittance matrix. With the behavioral model of the ideal switch, we can significantly accelerate the optimization. Simulation on three drivers from industrial TEG data demonstrates that our algorithm can reduce Ron effectively by shaping metals appropriately within a given routing area.

  • Influence of PH3 Preflow Time on Initial Growth of GaP on Si Substrates by Metalorganic Vapor Phase Epitaxy

    Yasushi TAKANO  Takuya OKAMOTO  Tatsuya TAKAGI  Shunro FUKE  

     
    PAPER-Nanomaterials and Nanostructures

      Vol:
    E92-C No:12
      Page(s):
    1443-1448

    Initial growth of GaP on Si substrates using metalorganic vapor phase epitaxy was studied. Si substrates were exposed to PH3 preflow for 15 s or 120 s at 830 after they were preheated at 925. Atomic force microscopy (AFM) revealed that the Si surface after preflow for 120 s was much rougher than that after preflow for 15 s. After 1.5 nm GaP deposition on the Si substrates at 830, GaP islands nucleated more uniformly on the Si substrate after preflow for 15 s than on the substrate after preflow for 120 s. After 3 nm GaP deposition, layer structures were observed on a fraction of Si surface after preflow for 15 s. Island-like structures remained on the Si surface after preflow for 120 s. After 6 nm GaP deposition, the continuity of GaP layers improved on both substrates. However, AFM shows pits that penetrated a Si substrate with preflow for 120 s. Transmission electron microscopy of a GaP layer on the Si substrate after preflow for 120 s revealed that V-shaped pits penetrated the Si substrate. The preflow for a long time roughened the Si surface, which facilitated the pit formation during GaP growth in addition to degrading the surface morphology of GaP at the initial growth stage. Even after 50 nm GaP deposition, pits with a density on the order of 107 cm-2 remained in the sample. A 50-nm-thick flat GaP surface without pits was achieved for the sample with PH3 preflow for 15 s. The PH3 short preflow is necessary to produce a flat GaP surface on a Si substrate.

  • Experimental Research of Arc Behavior in Liquid Metal for Current Limiting Application

    Yiying LIU  Mingzhe RONG  Yi WU  Chenxi PAN  Hong LIU  Shijie YU  

     
    PAPER-Arc Discharge & Contact Phenomena

      Vol:
    E92-C No:8
      Page(s):
    1008-1012

    The liquid metal current limiter (LMCL) is a possible alternative to limit the short current of power system due to its special merits. This paper is devoted to the investigation of the arc behavior in liquid metal GaInSn for current limiting application. Firstly, the arc evolution including arc initiation, arc expansion and arc extinguish is observed through an experimental device. The resistance of arc and the self healing property of liquid metal are described. Subsequently, the arc erosion on electrodes is presented with its causes analyzed. Finally, the arc characteristics with the influence of rise rate of prospective current and channel diameter are discussed in details.

  • FDTD Simulation Based on Spark Resistance Formula for Electromagnetic Fields due to Spark between Charged Metal Bars with Ferrite Core Attachment

    Soichiro TAIRA  Osamu FUJIWARA  

     
    PAPER

      Vol:
    E92-B No:6
      Page(s):
    1960-1964

    The electromagnetic fields emitted from an electrostatic discharge (ESD) event occurring between charged metals cause seriously damage high-tech equipment. In order to clarify the generation mechanism of such ESD fields and also to reduce them, we previously proposed a finite-difference time-domain (FDTD) algorithm based on a delta-gap feeding method and a frequency dispersion characteristic formula (Naito's formula) of ferrite material for simulating the ESD fields due to a spark between the charged metals with ferrite core attachment. In the present study, by integrating the above FDTD algorithm and a spark-resistance formula, we simulated both of the ESD itself and the resultant fields for the metal bars with ferrite core attachment, and demonstrated that the core attachment close to the spark gap suppresses the magnetic field level. This finding was also validated via 6-GHz wide-band measurement of the magnetic near-field.

  • High Tc SQUID Detector for Magnetic Metallic Particles in Products Open Access

    Saburo TANAKA  Tomonori AKAI  Yoshimi HATSUKADE  Shuichi SUZUKI  

     
    INVITED PAPER

      Vol:
    E92-C No:3
      Page(s):
    323-326

    High-Tc superconducting quantum interference device (SQUID) is an ultra-sensitive magnetic sensor. After the discovery of the high-Tc superconducting materials, the performance of the high-Tc SQUID has been improved and stabilized. One strong candidate for application is a detection system of magnetic foreign matters in industrial products. There is a possibility that ultra-small metallic foreign matter has been accidentally mixed with industrial products such as lithium ion batteries. If this happens, the manufacturer of the product suffers a great loss recalling products. The outer dimension of metallic particles less than 100 micron cannot be detected using X-ray imaging, which is commonly used for the inspection. Therefore a highly sensitive system for small foreign matters is required. We developed detection systems based on high-Tc SQUID for industrial products. We could successfully detect small iron particles of less than 50 micron on a belt conveyer. These detection levels were hard to be achieved using conventional X-ray detection or other methods.

  • A Complementary-Coupled CMOS LC Quadrature Oscillator

    Seok-Ju YUN  Dae-Young YOON  Sang-Gug LEE  

     
    PAPER-Electronic Circuits

      Vol:
    E91-C No:11
      Page(s):
    1806-1810

    A novel CMOS LC quadrature oscillator (QO) which adopts complementary-coupling circuitry has been proposed. The performance improvement in I/Q phase error and phase noise of the proposed QO, is explained in comparison with conventional QOs. The proposed QO is implemented in 0.18 µm CMOS technology along with conventional QOs. The measurement result of the proposed QO shows -133.5 dBc/Hz of phase noise at 1 MHz offset and 0.6 I/Q phase difference, while oscillating at 1.77 GHz. The proposed QO shows more than 6.5 dB phase noise improvement compared to that of the conventional QOs over the offset frequency range of 10 K-1 MHz, while dissipating 4 mA from 1.4 V supply.

  • Optical Properties of Copper in Chalcogenide Materials Used in Programmable Metallization Cell Devices

    Hyuk CHOI  Ki-Hyun NAM  Long-Yun JU  Hong-Bay CHUNG  

     
    PAPER-Electronic Materials

      Vol:
    E91-C No:9
      Page(s):
    1501-1504

    Programmable Metallization Cell (PMC) Random Access Memory is based on the electrochemical growth and removal of nanoscale metallic pathways in thin films of solid electrolytes. In this study, we investigate the nature of thin films formed by the photo doping of Cu into chalcogenide materials for use in programmable metallization cell devices. These devices rely on metal ion transport in the film so produced to create electrically programmable resistance states. The results imply that a Cu-rich phase separates owing to the reaction of Cu with free atoms from chalcogenide materials.

  • Fabrication of Alternating-Phase Fed Single-Layer Slotted Waveguide Arrays Using Plastic Materials with Metal-Plating Open Access

    Miao ZHANG  Jiro HIROKAWA  Makoto ANDO  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:8
      Page(s):
    2761-2763

    Lightweight single-layer slotted waveguide array antennas are fabricated using plastic materials with metal-plating. A plastic material that has good heat-radiation properties is investigated. Three types of antennas are fabricated by milling, using ABS resin, heat-radiating plastic, and aluminum alloy. In measurements, all three types of antennas are confirmed to have almost the same VSWR and gain in the 25 GHz frequency band.

  • Wavelength Switching Using GaInAs/InP MQW Variable Refractive-Index Arrayed Waveguides by Thermo-Optic Effect

    Yu SHIMIZU  Sou KAWABE  Hiroya IWASAKI  Takayuki SUGIO  Kazuhiko SHIMOMURA  

     
    PAPER

      Vol:
    E91-C No:7
      Page(s):
    1110-1116

    We have successfully demonstrated a GaInAs/InP multiple quantum well (MQW)-based wavelength switch composed of the straight arrayed waveguide with linearly varying refractive index distribution by changing the refractive index using thermo-optic effect. Since optical path length differences between waveguides in the array were achieved through refractive index differences that were controlled by SiO2 mask design in selective metal-organic vapor phase epitaxy (MOVPE), wavelength demultiplexing, and the output port switching in each wavelength of light by the refractive index change in the array waveguides through the thermo-optic effect were achieved. We have obtained the wavelength switching and the change of transmission spectra in each output ports.

  • Wave Absorber by Using Cylindrical Bars with Magnetic Loss Covers Arranged Metallic Mesh for Improving ETC Environment

    Kouta MATSUMOTO  Atsushi KITAMOTO  Takuya NAKAMURA  Takahiro AOYAGI  Osamu HASHIMOTO  Takashi MIYAMOTO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E91-C No:2
      Page(s):
    220-223

    The wave absorber composed of cylindrical bars arranged periodically and metallic mesh for improving visibility is proposed for ETC, and characteristics of reflectivity and shielding effect are evaluated analytically and experimentally. As a result, reflectivity of -10 dB and shielding effect of -25 dB are obtained for circularly polarized wave when the gap between cylindrical bars is 30 mm. Therefore, realization of proposed wave absorber for installing between ETC lanes can be clarified.

  • Two-Dimensional FDTD Analysis of the Readout Characteristics of an Optical Near Field Disk

    Shinya KAGAWA  Yiwei HE  Toshitaka KOJIMA  

     
    PAPER-Optical Recording (or Optical Memory, Optical Storage)

      Vol:
    E91-C No:1
      Page(s):
    48-55

    Various kinds of optical near-field apertures have been proposed for higher throughput and smaller spot size. However, few studies have mentioned the readout characteristics of the recorded marks on an optical disk illuminated by a near field optical light. In this paper, we have investigated the scattering light by a two-dimensional recorded mark on a phase change disk with Finite-Difference Time-Domain (FDTD) simulations. Instead of using Recursive Convolution (RC) and Piecewise Linear Recursive Convolution (PLRC) scheme, we integrated the motion equation of free electron into conventional FDTD method to solve the electromagnetic field in the metallic materials. The validity of the proposed method is illustrated by comparing its results with those from the analytic exact solution. We analyzed the distributions of optical near-field around a two-dimensional metallic nano-aperture, and then calculated the far-field scattering pattern from a two-dimensional recorded mark on a phase change disk while it was illuminated by an optical near-field though a nanoaperture. The sum signal by a condenser lens was calculated from far-field pattern, and its relationships with the width of recorded mark and the thickness of each layer in the phase change disk were illustrated. The cross-talk between the recorded marks was also discussed.

  • Performance Evaluation of Built-In Small LF Antennas inside a Metal Case

    Kazuaki ABE  Jun-ichi TAKADA  

     
    PAPER-Antennas/Systems

      Vol:
    E90-C No:9
      Page(s):
    1784-1792

    This paper describes a method for evaluating the performance of a small magnetic core loop antenna used for radio controlled watches. Recently, amorphous metal core loop antennas are used as built-in small antennas inside a metal case. It is difficult to perform electromagnetic simulation for amorphous core loop antennas because of the complicated laminate structure. Therefore, we modeled the amorphous metal core loop antenna as an equivalent bulk structure having anisotropic permeability property that we can simulate. We analyzed the receiving sensitivity of the amorphous antenna by calculating the antenna factor. The receiving sensitivity degrades remarkably when an antenna is inside a metal case. We performed further simulation to investigate eddy current losses that cause deterioration.

  • Excitation of Surface Plasmons on a Metal Grating and Its Application to an Index Sensor

    Yoichi OKUNO  Taikei SUYAMA  Rui HU  Sailing HE  Toyonori MATSUDA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E90-C No:7
      Page(s):
    1507-1514

    Excitation of plasmons on the surface of a metal grating placed in planar or conical mounting is investigated in detail. Most of the results of numerical computations are compared with experimental data. When a TM wave illuminates a metal grating, total or partial absorption of incident light occurs at angles of incidence at which the plasmon surface waves are excited. In planar mounting the absorption is generally strong and nearly total absorption is observed. While in conical mounting, it is not so strong as that in the planar mounting case and a considerable amount of incident power is reflected. This, however, is accompanied by enhanced TM-TE mode conversion and the greater part of the reflected wave is in the TE polarization. The reciprocal of the TM-wave efficiency, hence, is a practical measure in finding the angles of incidence at which the plasmons are excited. Because the angles are sensitive functions of the refractive index of a material over the grating surface, this phenomenon can be used as an index sensor.

  • Consideration on Contact Mechanism of YBaCuO Bulk Superconductor with Deposited Metal Layer

    Hiroyuki FUJITA  Katsuya FUKUDA  Koichiro SAWA  Masaru TOMITA  Masato MURAKAMI  Naomichi SAKAI  Izumi HIRABAYASHI  

     
    PAPER-Contact Phenomena

      Vol:
    E90-C No:7
      Page(s):
    1421-1428

    A persistent current switch (PCS) is used for superconducting applications, such as superconducting magnetic energy storage (SMES) system. The authors have proposed a mechanical switch of Y-Ba-Cu-O (YBCO) bulk as a mechanical PCS. In previous study, the authors have successfully reduced a residual resistance by depositing with metal on contact surface. This paper focused on a current carrying area (called a-spot) on contact surface and presented an effect of deposited metal on electrical contact characteristics in order to clear the contact mechanism. As the results of experiments and simulation using FEM, it became clear that it was effective for reducing the residual resistance from a view point of increasing the a-spot by depositing with metal.

  • Electrical and Tribological Characteristics of Metal-Doped Carbon Thin Films

    Shigeru UMEMURA  Shinsuke MISU-MATSUHASHI  Shigeru HIRONO  

     
    PAPER-Materials

      Vol:
    E90-C No:7
      Page(s):
    1435-1440

    To realize highly conductive and wear-durable thin films, we deposited metal doped carbon films onto silicon substrates by RF sputtering method. The dopant metals were various precious metals and transition metals. The electrical conductivity and wear durability of the deposited films were evaluated. We have found that Ir doping especially increased the electrical conductivity for the given amount of dopant metal. The wear durability of Ir-doped carbon films did not deteriorate even below a 7 at.% Ir concentration, and the conductivity of 7 at.% Ir-doped carbon was twenty times that of a non-doped carbon thin film.

  • Evaluation of Dielectric Reliability of Ultrathin HfSiOxNy in Metal-Gate Capacitors

    Yanli PEI  Hideki MURAKAMI  Seiichiro HIGASHI  Seiichi MIYAZAKI  Seiji INUMIYA  Yasuo NARA  

     
    PAPER-Ultra-Thin Gate Insulators

      Vol:
    E90-C No:5
      Page(s):
    962-967

    We have studied the electrical and breakdown characteristics of 5 nm-thick HfSiOxNy (Hf/(Hf + Si)=0.43, nitrogen content=4.5-17.8 at.%) in Al-gate and NiSi-gate capacitors. For Al-gate capacitors, the flat-band shift due to positive fixed charges increases with the nitrogen content in the dielectric layer. In contrast, for NiSi-gate capacitors, the flat band is almost independent of the nitrogen content, which is presumably controlled by the quality of the interface between NiSi and the dielectric layer. The leakage current markedly increases with nitrogen content. Correspondingly, although the time-to-soft breakdown, tSBD, gradually decreases with increasing nitrogen content, the charge-to-soft breakdown, QSBD, increases with the nitrogen content. For Al-gate capacitors, the Weibull slope of time-dependent dielectric breakdown (TDDB) under constant voltage stress (CVS) remains constant at 2 for a nitrogen content of up to 12.5 at.% and then decreases to unity at 17.8 at.%. This must be a condition critical to the formation of the percolation path for breakdown. In contrast, for NiSi gate capacitors, a Weibull slope smaller than unity was obtained, suggesting that structural inhomogeneity, involving defect generation, is introduced during the NiSi gate fabrication, but this negative impact is reduced with nitrogen incorporation.

  • Monolithically Integrated Mach-Zehnder Interferometer All-Optical Switches by Selective Area MOVPE

    Xueliang SONG  Naoki FUTAKUCHI  Daisuke MIYASHITA  Foo Cheong YIT  Yoshiaki NAKANO  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E89-C No:7
      Page(s):
    1068-1079

    We achieved first dynamic all-optical signal processing with a bandgap-engineered MZI SOA all-optical switch. The wide-gap Selective Area Growth (SAG) technique was used to provide multi-bandgap materials with a single step epitaxy. The maximum photoluminescence (PL) peak shift obtained between the active region and the passive region was 192 nm. The static current switching with the fabricated switch indicated a large carrier induced refractive index change; up to 14 π phase shift was obtained with 60 mA injection in the SOA. The carrier recovery time of the SOA for obtaining a phase shift of π was estimated to be 250-300 ps. A clear eye pattern was obtained in 2.5 Gbps all-optical wavelength conversion. This is the first all-optical wavelength conversion demonstration with a bandgap-engineered PIC with either selective area growth or quantum-well intermixing techniques.

41-60hit(132hit)