Haitao XIE Qingtao FAN Qian XIAO
Nowadays recommender systems (RS) keep drawing attention from academia, and collaborative filtering (CF) is the most successful technique for building RS. To overcome the inherent limitation, which is referred to as data sparsity in CF, various solutions are proposed to incorporate additional social information into recommendation processes, such as trust networks. However, existing methods suffer from multi-source data integration (i.e., fusion of social information and ratings), which is the basis for similarity calculation of user preferences. To this end, we propose a social collaborative filtering method based on novel trust metrics. Firstly, we use Graph Convolutional Networks (GCNs) to learn the associations between social information and user ratings while considering the underlying social network structures. Secondly, we measure the direct-trust values between neighbors by representing multi-source data as user ratings on popular items, and then calculate the indirect-trust values based on trust propagations. Thirdly, we employ all trust values to create a social regularization in user-item rating matrix factorization in order to avoid overfittings. The experiments on real datasets show that our approach outperforms the other state-of-the-art methods on usage of multi-source data to alleviate data sparsity.
Takahiro OGAWA Keisuke MAEDA Miki HASEYAMA
An inpainting method via sparse representation based on a new phaseless quality metric is presented in this paper. Since power spectra, phaseless features, of local regions within images enable more successful representation of their texture characteristics compared to their pixel values, a new quality metric based on these phaseless features is newly derived for image representation. Specifically, the proposed method enables spare representation of target signals, i.e., target patches, including missing intensities by monitoring errors converged by phase retrieval as the novel phaseless quality metric. This is the main contribution of our study. In this approach, the phase retrieval algorithm used in our method has the following two important roles: (1) derivation of the new quality metric that can be derived even for images including missing intensities and (2) conversion of phaseless features, i.e., power spectra, to pixel values, i.e., intensities. Therefore, the above novel approach solves the existing problem of not being able to use better features or better quality metrics for inpainting. Results of experiments showed that the proposed method using sparse representation based on the new phaseless quality metric outperforms previously reported methods that directly use pixel values for inpainting.
Masamune NOMURA Yuki NAKAMURA Hiroo TARAO Amane TAKEI
This paper describes the effectiveness of the geometric multi-grid method in a current density analysis using a numerical human body model. The scalar potential finite difference (SPFD) method is used as a numerical method for analyzing the current density inside a human body due to contact with charged objects in a low-frequency band, and research related to methods to solve faster large-scale simultaneous equations based on the SPFD method has been conducted. In previous research, the block incomplete Cholesky conjugate gradients (ICCG) method is proposed as an effective method to solve the simultaneous equations faster. However, even though the block ICCG method is used, many iterations are still needed. Therefore, in this study, we focus on the geometric multi-grid method as a method to solve the problem. We develop the geometric-multi-grid method and evaluate performances by comparing it with the block ICCG method in terms of computation time and the number of iterations. The results show that the number of iterations needed for the geometric multi-grid method is much less than that for the block ICCG method. In addition, the computation time is much shorter, depending on the number of threads and the number of coarse grids. Also, by using multi-color ordering, the parallel performance of the geometric multi-grid method can be greatly improved.
Zhongjian MA Dongzhen HUANG Baoqing LI Xiaobing YUAN
Current stereo matching methods benefit a lot from the precise stereo estimation with Convolutional Neural Networks (CNNs). Nevertheless, patch-based siamese networks rely on the implicit assumption of constant depth within a window, which does not hold for slanted surfaces. Existing methods for handling slanted patches focus on post-processing. In contrast, we propose a novel module for matching cost networks to overcome this bias. Slanted objects appear horizontally stretched between stereo pairs, suggesting that the feature extraction in the horizontal direction should be different from that in the vertical direction. To tackle this distortion, we utilize asymmetric convolutions in our proposed module. Experimental results show that the proposed module in matching cost networks can achieve higher accuracy with fewer parameters compared to conventional methods.
Naruto ARAI Ken OKAMOTO Jun KATO Yoshiharu AKIYAMA
This paper describes a method of measuring the unsymmetric voltage of conducted noise using a floating measurement system. Here, floating means that there is no physical connection to the reference ground. The method works by correcting the measured voltage to the desired unsymmetric voltage using the capacitance between the measurement instrument and the reference ground plane acting as the return path of the conducted electromagnetic noise. The existing capacitance measurement instrument needs a probe in contact with the ground, so it is difficult to use for on-site measurement of stray capacitance to ground at troubleshooting sites where the ground plane is not exposed or no ground connection point is available. The authors have developed a method of measuring stray capacitance to ground that does not require physical connection of the probe to the ground plane. The developed method can be used to estimate the capacitance between the measurement instrument and ground plane even if the distance and relative permittivity of the space are unknown. And a method is proposed for correcting the voltage measured with the floating measurement system to obtain the unsymmetric voltage of the noise by using the measured capacitance to ground. In the experiment, the unsymmetric voltage of a sinusoidal wave transmitting on a co-axial cable was measured with a floating oscilloscope in a shield room and the measured voltage was corrected to within 2dB of expected voltage by using the capacitance measured with the developed method. In addition, the voltage of a rectangular wave measured with the floating oscilloscope, which displays sag caused by the stray capacitance to ground, was corrected to a rectangular wave without sag. This means that the phase of the unsymmetric voltage can also be corrected by the measured stray capacitance. From these results, the effectiveness of the proposed methods is shown.
Yoshihiko OMORI Takao YAMASHITA
In this paper, we propose homomorphic encryption based device owner equality verification (HE-DOEV), a new method to verify whether the owners of two devices are the same. The proposed method is expected to be used for credential sharing among devices owned by the same user. Credential sharing is essential to improve the usability of devices with hardware-assisted trusted environments, such as a secure element (SE) and a trusted execution environment (TEE), for securely storing credentials such as private keys. In the HE-DOEV method, we assume that the owner of every device is associated with a public key infrastructure (PKI) certificate issued by an identity provider (IdP), where a PKI certificate is used to authenticate the owner of a device. In the HE-DOEV method, device owner equality is collaboratively verified by user devices and IdPs that issue PKI certificates to them. The HE-DOEV method verifies device owner equality under the condition where multiple IdPs can issue PKI certificates to user devices. In addition, it can verify the equality of device owners without disclosing to others any privacy-related information such as personally identifiable information and long-lived identifiers managed by an entity. The disclosure of privacy-related information is eliminated by using homomorphic encryption. We evaluated the processing performance of a server needed for an IdP in the HE-DOEV method. The evaluation showed that the HE-DOEV method can provide a DOEV service for 100 million users by using a small-scale system in terms of the number of servers.
Yi-ze LE Yong FENG Da-jiang LIU Bao-hua QIANG
Metric learning aims to generate similarity-preserved low dimensional feature vectors from input images. Most existing supervised deep metric learning methods usually define a carefully-designed loss function to make a constraint on relative position between samples in projected lower dimensional space. In this paper, we propose a novel architecture called Naive Similarity Discriminator (NSD) to learn the distribution of easy samples and predict their probability of being similar. Our purpose lies on encouraging generator network to generate vectors in fitting positions whose similarity can be distinguished by our discriminator. Adequate comparison experiments was performed to demonstrate the ability of our proposed model on retrieval and clustering tasks, with precision within specific radius, normalized mutual information and F1 score as evaluation metrics.
Tian XIE Hongchang CHEN Tuosiyu MING Jianpeng ZHANG Chao GAO Shaomei LI Yuehang DING
In partial label data, the ground-truth label of a training example is concealed in a set of candidate labels associated with the instance. As the ground-truth label is inaccessible, it is difficult to train the classifier via the label information. Consequently, manifold structure information is adopted, which is under the assumption that neighbor/similar instances in the feature space have similar labels in the label space. However, the real-world data may not fully satisfy this assumption. In this paper, a partial label metric learning method based on likelihood-ratio test is proposed to make partial label data satisfy the manifold assumption. Moreover, the proposed method needs no objective function and treats the data pairs asymmetrically. The experimental results on several real-world PLL datasets indicate that the proposed method outperforms the existing partial label metric learning methods in terms of classification accuracy and disambiguation accuracy while costs less time.
Osama OUDA Slim CHAOUI Norimichi TSUMURA
Biometric template protection techniques have been proposed to address security and privacy issues inherent to biometric-based authentication systems. However, it has been shown that the robustness of most of such techniques against reversibility and linkability attacks are overestimated. Thus, a thorough security analysis of recently proposed template protection schemes has to be carried out. Negative iris recognition is an interesting iris template protection scheme based on the concept of negative databases. In this paper, we present a comprehensive security analysis of this scheme in order to validate its practical usefulness. Although the authors of negative iris recognition claim that their scheme possesses both irreversibility and unlinkability, we demonstrate that more than 75% of the original iris-code bits can be recovered using a single protected template. Moreover, we show that the negative iris recognition scheme is vulnerable to attacks via record multiplicity where an adversary can combine several transformed templates to recover more proportion of the original iris-code. Finally, we demonstrate that the scheme does not possess unlinkability. The experimental results, on the CASIA-IrisV3 Interval public database, support our theory and confirm that the negative iris recognition scheme is susceptible to reversibility, linkability, and record multiplicity attacks.
The interval in ℕ composed of finite states of the stream version of asymmetric binary systems (ABS) is irreducible if it admits an irreducible finite-state Markov chain. We say that the stream version of ABS is irreducible if its interval is irreducible. Duda gave a necessary condition for the interval to be irreducible. For a probability vector (p,1-p), we assume that p is irrational. Then, we give a necessary and sufficient condition for the interval to be irreducible. The obtained conditions imply that, for a sufficiently small ε, if p∈(1/2,1/2+ε), then the stream version of ABS could not be practically irreducible.
Ye PENG Wentao ZHAO Wei CAI Jinshu SU Biao HAN Qiang LIU
Due to the superior performance, deep learning has been widely applied to various applications, including image classification, bioinformatics, and cybersecurity. Nevertheless, the research investigations on deep learning in the adversarial environment are still on their preliminary stage. The emerging adversarial learning methods, e.g., generative adversarial networks, have introduced two vital questions: to what degree the security of deep learning with the presence of adversarial examples is; how to evaluate the performance of deep learning models in adversarial environment, thus, to raise security advice such that the selected application system based on deep learning is resistant to adversarial examples. To see the answers, we leverage image classification as an example application scenario to propose a framework of Evaluating Deep Learning for Image Classification (EDLIC) to conduct comprehensively quantitative analysis. Moreover, we introduce a set of evaluating metrics to measure the performance of different attacking and defensive techniques. After that, we conduct extensive experiments towards the performance of deep learning for image classification under different adversarial environments to validate the scalability of EDLIC. Finally, we give some advice about the selection of deep learning models for image classification based on these comparative results.
Taisuke KAWAMATA Takako AKAKURA
To prevent proxy-test taking among examinees in unsynchronized e-Testing, a previous work proposed an online handwriting authentication. That method was limited to applied for end of each answer. For free response tests that needed to authenticate throughout the answer, we used the Bayesian prior information to examine a sequential handwriting authentication procedure. The evaluation results indicate that the accuracy of this procedure is higher than the previous method in examinees authentication during mathematics exam with referring the Chinese character.
You Zhu LI Yong Qiang JIA Hong Shu LIAO
Radio signals show small characteristic differences between radio transmitters resulted from their idiosyncratic hardware properties. Based on the parameters estimation of transmitter imperfections, a novel radiometric identification method is presented in this letter. The fingerprint features of the radio are extracted from the mismatches of the modulator and the nonlinearity of the power amplifier, and used to train a support vector machine classifier to identify the class label of a new data. Experiments on real data sets demonstrate the validation of this method.
Huyen T. T. TRAN Trang H. HOANG Phu N. MINH Nam PHAM NGOC Truong CONG THANG
Thanks to the ability to bring immersive experiences to users, Virtual Reality (VR) technologies have been gaining popularity in recent years. A key component in VR systems is omnidirectional content, which can provide 360-degree views of scenes. However, at a given time, only a portion of the full omnidirectional content, called viewport, is displayed corresponding to the user's current viewing direction. In this work, we first develop Weighted-Viewport PSNR (W-VPSNR), an objective quality metric for quality assessment of omnidirectional content. The proposed metric takes into account the foveation feature of the human visual system. Then, we build a subjective database consisting of 72 stimuli with spatial varying viewport quality. By using this database, an evaluation of the proposed metric and four conventional metrics is conducted. Experiment results show that the W-VPSNR metric well correlates with the mean opinion scores (MOS) and outperforms the conventional metrics. Also, it is found that the conventional metrics do not perform well for omnidirectional content.
Kazuro KIMURA Shinya HIGA Masao OKITA Fumihiko INO
In this paper, we propose an acceleration method for the Held-Karp algorithm that solves the symmetric traveling salesman problem by dynamic programming. The proposed method achieves acceleration with two techniques. First, we locate data-independent subproblems so that the subproblems can be solved in parallel. Second, we reduce the number of subproblems by a meet in the middle (MITM) technique, which computes the optimal path from both clockwise and counterclockwise directions. We show theoretical analysis on the impact of MITM in terms of the time and space complexities. In experiments, we compared the proposed method with a previous method running on a single-core CPU. Experimental results show that the proposed method on an 8-core CPU was 9.5-10.5 times faster than the previous method on a single-core CPU. Moreover, the proposed method on a graphics processing unit (GPU) was 30-40 times faster than that on an 8-core CPU. As a side effect, the proposed method reduced the memory usage by 48%.
Kazuya OSE Kazunori IWATA Nobuo SUEMATSU
Consider selecting points on a contour in the x-y plane. In shape analysis, this is frequently referred to as contour sampling. It is important to select the points such that they effectively represent the shape of the contour. Generally, the stroke order and number of strokes are informative for that purpose. Several effective methods exist for sampling contours drawn with a certain stroke order and number of strokes, such as the English alphabet or Arabic figures. However, many contours entail an uncertain stroke order and number of strokes, such as pictures of symbols, and little research has focused on methods for sampling such contours. This is because selecting the points in this case typically requires a large computational cost to check all the possible choices. In this paper, we present a sampling method that is useful regardless of whether the contours are drawn with a certain stroke order and number of strokes or not. Our sampling method thereby expands the application possibilities of contour processing. We formulate contour sampling as a discrete optimization problem that can be solved using a type of direct search. Based on a geometric graph whose vertices are the points and whose edges form rectangles, we construct an effective objective function for the problem. Using different shape datasets, we demonstrate that our sampling method is effective with respect to shape representation and retrieval.
Yu PAN Guyu HU Zhisong PAN Shuaihui WANG Dongsheng SHAO
Detecting community structures and analyzing temporal evolution in dynamic networks are challenging tasks to explore the inherent characteristics of the complex networks. In this paper, we propose a semi-supervised evolutionary clustering model based on symmetric nonnegative matrix factorization to detect communities in dynamic networks, named sEC-SNMF. We use the results of community partition at the previous time step as the priori information to modify the current network topology, then smooth-out the evolution of the communities and reduce the impact of noise. Furthermore, we introduce a community transition probability matrix to track and analyze the temporal evolutions. Different from previous algorithms, our approach does not need to know the number of communities in advance and can deal with the situation in which the number of communities and nodes varies over time. Extensive experiments on synthetic datasets demonstrate that the proposed method is competitive and has a superior performance.
Atsushi KOSHIBA Takahiro HIROFUCHI Ryousei TAKANO Mitaro NAMIKI
Non-volatile memory (NVM) is a promising technology for low-energy and high-capacity main memory of computers. The characteristics of NVM devices, however, tend to be fundamentally different from those of DRAM (i.e., the memory device currently used for main memory), because of differences in principles of memory cells. Typically, the write latency of an NVM device such as PCM and ReRAM is much higher than its read latency. The asymmetry in read/write latencies likely affects the performance of applications significantly. For analyzing behavior of applications running on NVM-based main memory, most researchers use software-based emulation tools due to the limited number of commercial NVM products. However, these existing emulation tools are too slow to emulate a large-scale, realistic workload or too simplistic to investigate the details of application behavior on NVM with asymmetric read/write latencies. This paper therefore proposes a new NVM emulation mechanism that is not only light-weight but also aware of a read/write latency gap in NVM-based main memory. We implemented the prototype of the proposed mechanism for the Intel CPU processors of the Haswell architecture. We also evaluated its accuracy and performed case studies for practical benchmarks. The results showed that our prototype accurately emulated write-latencies of NVM-based main memory: it emulated the NVM write latencies in a range from 200 ns to 1000 ns with negligible errors from 0.2% to 1.1%. We confirmed that the use of our emulator enabled us to successfully estimate performance of practical workloads for NVM-based main memory, while an existing light-weight emulation model misestimated.
Qinglan ZHAO Dong ZHENG Baodong QIN Rui GUO
Semi-bent functions have important applications in cryptography and coding theory. 2-rotation symmetric semi-bent functions are a class of semi-bent functions with the simplicity for efficient computation because of their invariance under 2-cyclic shift. However, no construction of 2-rotation symmetric semi-bent functions with algebraic degree bigger than 2 has been presented in the literature. In this paper, we introduce four classes of 2m-variable 2-rotation symmetric semi-bent functions including balanced ones. Two classes of 2-rotation symmetric semi-bent functions have algebraic degree from 3 to m for odd m≥3, and the other two classes have algebraic degree from 3 to m/2 for even m≥6 with m/2 being odd.
Zhiyu SHAO Juan WU Qiangqiang OUYANG
Many quality metrics have been proposed for the compliance perception to assess haptic device performance and perceived results. Perceived compliance may be influenced by factors such as object properties, experimental conditions and human perceptual habits. In this paper, analysis of softness perception was conducted to find out relevant quality metrics dominating in the compliance perception system and their correlation with perception results, by expressing these metrics by basic physical parameters that characterizing these factors. Based on three psychophysical experiments, just noticeable differences (JNDs) for perceived softness of combination of different stiffness coefficients and damping levels rendered by haptic devices were analyzed. Interaction data during the interaction process were recorded and analyzed. Preliminary experimental results show that the discrimination ability of softness perception changes with the ratio of damping to stiffness when subjects exploring at their habitual speed. Analysis results indicate that quality metrics of Rate-hardness, Extended Rate-hardness and ratio of damping to stiffness have high correlation for perceived results. Further analysis results show that parameters that reflecting object properties (stiffness, damping), experimental conditions (force bandwidth) and human perceptual habits (initial speed, maximum force change rate) lead to the change of these quality metrics, which then bring different perceptual feeling and finally result in the change of discrimination ability. Findings in this paper may provide a better understanding of softness perception and useful guidance in improvement of haptic and teleoperation devices.