The very high path loss caused by molecular absorption becomes the biggest problem in Terahertz (THz) wireless communications. Recently, the multi-band ultra-massive multi-input multi-output (UM-MIMO) system has been proposed to overcome the distance problem. In UM-MIMO systems, the impact of mutual coupling among antennas on the system performance is unable to be ignored because of the dense array. In this letter, a channel model of UM-MIMO communication system is developed which considers coupling effect. The effect of mutual coupling in the subarray on the functionality of the system has been investigated through simulation studies, and reliable results have been derived.
Fankun ZENG Xin QIU Jinhai LI Biqi LONG Wuhai SU Xiaoran CHEN
Mutual coupling between antenna array elements will significantly degrade the performance of the array signal processing methods. Due to the Toeplitz structure of mutual coupling matrix (MCM), there exist some mutual coupling calibration algorithms for the uniform linear array (ULA) or uniform circular array (UCA). But few methods for other arrays. In this letter, we derive a new transformation formula for the MCM of the 7-elements hexagonal array (HA-7). Further, we extend two mutual coupling auto-calibration methods from UCA to HA by the transformation formula. Simulation results demonstrate the validity of the proposed two methods.
Weichuang YU Peiyu HE Fan PAN Ao CUI Zili XU
To reduce mutual coupling of a two-level nested array (TLNA) with an even number of sensors, we propose an improved array configuration that exhibits all the good properties of the prototype optimal configuration under the constraint of a fixed number of sensors N and achieves reduction of mutual coupling. Compared with the prototype optimal TLNA (POTLNA), which inner level and outer level both have N/2 sensors, those of the improved optimal TLNA (IOTLNA) are N/2-1 and N/2+1. It is proved that the physical aperture and uniform degrees of freedom (uDOFs) of IOTLNA are the same as those of POTLNA, and the number of sensor pairs with small separations of IOTLNA is reduced. We also construct an improved optimal second-order super nested array (SNA) by using the IOTLNA as the parent nested array, termed IOTLNA-SNA, which has the same physical aperture and the same uDOFs, as well as the IOTLNA. Numerical simulations demonstrate the better performance of the improved array configurations.
Shogo NAKAMURA Sho IWAZAKI Koichi ICHIGE
This paper presents a method to optimize 2-D sparse array configurations along with a technique to interpolate holes to accurately estimate the direction of arrival (DOA). Conventional 2-D sparse arrays are often defined using a closed-form representation and have the property that they can create hole-free difference co-arrays that can estimate DOAs of incident signals that outnumber the physical elements. However, this property restricts the array configuration to a limited structure and results in a significant mutual coupling effect between consecutive sensors. In this paper, we introduce an optimization-based method for designing 2-D sparse arrays that enhances flexibility of array configuration as well as DOA estimation accuracy. We also propose a method to interpolate holes in 2-D co-arrays by nuclear norm minimization (NNM) that permits holes and to extend array aperture to further enhance DOA estimation accuracy. The performance of the proposed optimum arrays is evaluated through numerical examples.
Takuya MIYASAKA Hiroshi SATO Masaharu TAKAHASHI
MIMO technology, which uses multiple antennas, has been introduced to the mobile terminal to increase communication capacity per unit frequency. However, MIMO suffers from the problem of mutual coupling. If MIMO antennas are closely packed, as in a small wireless terminal, a strong mutual coupling occurs. The mutual coupling degrades radiation efficiency and channel capacity. As modern terminals are likely to use three MIMO antennas, reducing the mutual coupling 3×3 MIMO is essential. Some decoupling methods for three elements have been proposed. Unfortunately, these methods demand that the elements be cross-wired, which complicates fabrication and raises the cost. In this paper, we propose a non-connected decoupling method that uses short stubs and an insertion inductor and confirms that the proposed model offers excellent decoupling and increased radiation efficiency.
This paper presents a meta-structured circular polarized array antenna with wide scan angle. In order to widen the scanning angle of array antennas, this paper investigates unit antenna beamwidth and the coupling effects between array elements, both of which directly affect the steering performance. As a result, the optimal array distance, the mode configuration, and the antenna structure are elucidated. By using the features of the miniaturized mu-zero resonance (MZR) antenna, it is possible to design the antenna at optimum array distance for wide beamwidth. In addition, by modifying via position and gap configuration of the antenna, it is possible to optimize the mode configuration for optimal isolation. Finally, the 3dB steerable angle of 66° is successfully demonstrated using a 1x8 MZR CP antenna array without any additional decoupling structure. The measured beam patterns at a scan angle of 0°, 22°, 44°, and 66°agree well with the simulated beam patterns.
Tarek Hasan AL MAHMUD Zhongfu YE Kashif SHABIR Yawar Ali SHEIKH
Using local time frames to treat non-stationary real world signals as stationary yields Quasi-Stationary Signals (QSS). In this paper, direction of arrival (DOA) estimation of uncorrelated non-circular QSS is analyzed by applying a novel technique to achieve larger consecutive lags using coprime array. A scheme of virtual extension of coprime array is proposed that exploits the difference and sum co-array which can increase consecutive co-array lags in remarkable number by using less number of sensors. In the proposed method, cross lags as well as self lags are exploited for virtual extension of co-arrays both for differences and sums. The method offers higher degrees of freedom (DOF) with a larger number of non-negative consecutive lags equal to MN+2M+1 by using only M+N-1 number of sensors where M and N are coprime with congenial interelement spacings. A larger covariance matrix can be achieved by performing covariance like computations with the Khatri-Rao (KR) subspace based approach which can operate in undetermined cases and even can deal with unknown noise covariances. This paper concentrates on only non-negative consecutive lags and subspace based method like Multiple Signal Classification (MUSIC) based approach has been executed for DOA estimation. Hence, the proposed method, named Virtual Extension of Coprime Array imbibing Difference and Sum (VECADS), in this work is promising to create larger covariance matrix with higher DOF for high resolution DOA estimation. The coprime distribution yielded by the proposed approach can yield higher resolution DOA estimation while avoiding the mutual coupling effect. Simulation results demonstrate its effectiveness in terms of the accuracy of DOA estimation even with tightly aligned sources using fewer sensors compared with other techniques like prototype coprime, conventional coprime, Coprime Array with Displaced Subarrays (CADiS), CADiS after Coprime Array with Compressed Inter-element Spacing (CACIS) and nested array seizing only difference co-array.
Takashi YANAGI Toru FUKASAWA Hiroaki MIYASHITA
In this paper, a measurement method for the impedance and mutual coupling of multi-antennas that we have proposed is summarized. Impedance and mutual coupling characteristics are obtained after reducing the influence of the coaxial cables by synthesizing the measured S-parameters under the condition that unbalanced currents on the outside of the coaxial cables are canceled at feed points. We apply the proposed method to two closely positioned monopole antennas mounted on a small ground plane and demonstrate the validity and effectiveness of the proposed method by simulation and experiment. The proposed method is significantly better in terms of the accuracy of the mutual coupling data. In the presented case, the errors at the resonant frequency of the antennas are only 0.5dB in amplitude and 1.8° in phase.
This paper presents a novel decoupling network consisting of transmission lines and a bridge resistance for a two-element array antenna and evaluates its performance through simulations and measurements. To decouple the antennas, the phase of the mutual admittance between the antenna ports is rotated by using the transmission lines, and a pure resistance working as a bridge resistance is inserted between the two antenna ports to cancel the mutual coupling. The simulation results indicate that the proposed decoupling network can provide a wider bandwidth than the conventional approach. The proposed decoupling network is implemented and tested as a demonstration to confirm its performance. The measurement results indicate that the mutual coupling between the two antenna ports is lowered by about 47dB at the resonant frequency.
Dinh Thanh LE Nguyen Quoc DINH Yoshio KARASAWA
This paper presents a new technique to enhance the bandwidth of a printed dipole antenna for ultra-wideband applications. The basic idea is to exploit mutual coupling between the feeding line, which is designed closed and paralleled to dipole arms, the dipole arms and other elements of the antenna. Dipole arms, feeding lines as well as other parts are investigated in order to expand antenna bandwidth while still retaining antenna compactness. Based on the proposed technique, we develop two sample printed dipole antennas for advanced wireless communications. One is an ultra-wideband antenna which is suitable for multi-band-mode ultra-wideband applications or being a sensing antenna in cognitive radio. The other is a reconfigurable antenna which would be applicable for wideband cognitive radios. Antenna characteristics such as radiation patterns, current distributions, and gains at different frequencies are also investigated for both sample antennas.
Takenori YASUZUMI Koudai TAKAHASHI Naoki SANO Ryosuke SUGA Osamu HASHIMOTO
This paper presents a new simple method for reducing mutual coupling between dual-element microstrip antennas (MSAs) for bistatic radar using a wave absorber. The two elements are closely placed on a substrate by the distance of λ0/4 through the wall-shaped absorber. The height and width of the absorber were optimized for minimum mutual coupling with the electromagnetic simulator. It was found that less than -60 dB minimum mutual coupling can be achieved by the impedance matching of the absorber in a near field. The influence for the reflection characteristics from the absorber is small enough, and the reduction of the antenna gain is only 1.1 dB. The rate of the lost power characteristics showed that the absorption improves the mutual couplings. Then the proposed structure for a practical configuration was investigated. The measurement results of the optimized structure tallied well with the simulation results.
Huiling JIANG Ryo YAMAGUCHI Keizo CHO
High frequency bands such as the 3-GHz band have received much attention as frequency resources for broadband mobile communication systems. Radio Frequency (RF) integrated antennas are considered to be useful as base station antennas in decreasing the feeding loss that is otherwise inevitable in high frequency bands and they ensure sufficient power for broadband transmission. One problem in actualizing RF integrated antennas is miniaturizing the duplexer, which is generally large, among the RF circuitry components. To downsize the duplexer, we consider separately locating the transmitter (Tx) and receiver (Rx) antennas. To suppress further the mutual coupling between the Tx and Rx antennas, we investigate a filter integrated antenna configuration. In this paper, we consider an aperture coupled patch antenna as the base antenna configuration and propose a new filter integrated antenna that comprises multiple rectangular elements installed between the coupling slot and radiation element of the Rx antenna. The simulation and measurement results confirm that the new antenna reduces the mutual coupling in the transmission frequency band up to 5.7 dB compared to the conventional slot coupled patch antenna configuration.
In this paper, a simple type of printed dipole is proposed for Multi-Input Multi-Output (MIMO) applications in cognitive radio. The antenna is composed of a transmission line and a dipole. Some examinations of key factors and optimized parameters of the antenna are presented. The measured results illustrate that the proposed antenna offers a bandwidth of over 50% for Voltage Standing Wave Ratio (VSWR) less than 2, extending from 2.4 GHz to 4.0 GHz. The antenna peak gain in E-plane and radiation patterns at different frequencies are also explored. In addition, based on the proposed antenna, we introduce two simple broadband arrays for MIMO applications in cognitive radio. One has two ports and the other has four ports. Measurement results indicate that the arrays also work in a broad bandwidth. Mutual couplings between ports in each array are kept under -10 dB at the low frequencies and under -20 dB at the high frequencies of bandwidth of the arrays. Furthermore, we utilized the antenna arrays for some MIMO experiments to estimate the channel capacity in a wide frequency range.
Ryo MINAMI JeeYoung HONG Kenichi OKADA Akira MATSUZAWA
This paper presents measurement of on-chip coupling between PA and LNA integrated on Si CMOS substrate, which is caused by substrate coupling, magnetic coupling, power-line coupling, etc. These components are decomposed by measurements using diced chips. The result reveals that the substrate coupling is the most dominant in CMOS chips and the total isolation becomes less than -50 dB with more than 0.4 mm PA-to-LNA distance.
Jun ITOH Nguyen TUAN HUNG Hisashi MORISHITA
In this study, we propose a method to reduce the mutual coupling between two J-shaped folded monopole antennas (JFMAs), which cover the IEEE 802.11 b/g (2400-2484 MHz) band. First, the change in mutual coupling with the spacing between the two antenna elements is investigated by considering two feeding models, and the effects of changes in the coupling on the antenna efficiency are studied. Subsequently, we try the method to reduce mutual coupling, the method involves the use of a bridge line that links the two antennas. The mutual coupling can be significantly reduced and the total antenna efficiency can be improved by linking two shorting strips with the bridge line. In a past study, we had found that in the case of L-shaped folded monopole antennas (LFMAs), the mutual coupling and antenna efficiency vary with the linking location on the bridge line. Moreover, we compare the characteristics of the LFMA and JFMA and show that the JFMA is effective when miniaturized.
Huiling JIANG Ryo YAMAGUCHI Keizo CHO
A filter integrated antenna configuration that suppresses the coupling signal from the transmitter (Tx) to receiver (Rx) base station antenna is investigated. We propose an aperture coupled patch antenna with multiple trapezoidal elements installed on the substrate of the Rx antenna between the radiation and feed layers in order to increase the bandwidth in the Rx band while maintaining low mutual coupling in the Tx band. The mutual coupling characteristics and the fractional bandwidth of the Rx antenna are presented as functions of the shape and width of the trapezoidal elements.
Takehito SUZUKI Jiro HIROKAWA Makoto ANDO
This paper presents the analysis and design of a reflection-cancelling transverse slot-pair array antenna with baffles by using the Spectrum of Two-Dimensional Solutions (S2DS) method. For the transverse slot array, the slot spacings with more than one free-space wavelength cause the grating-lobes. The baffles suppress the grating-lobes effectively. A one-dimensional slot array is extracted from the 2D array with in-phase excitation by assuming periodicity in the transversal direction. The uniform excitation over the finite array is synthesized iteratively to demonstrate the fast and accurate results by S2DS. A unit design model with the baffles is introduced to determine the initial parameters of the slot-pairs, which greatly accelerate the iterations process. Experiments at 25.3 GHz demonstrate the suppression of the grating lobes to the level less than -20.0 dB and also the good uniformity of the aperture field distribution.
Takehito SUZUKI Jiro HIROKAWA Makoto ANDO
This paper presents the formulation for the evaluation of external coupling in the alternating-phase feed single-layer slotted waveguide array antenna with baffles by using the Spectrum of Two-Dimensional Solutions (S2DS) method. A one-dimensional slot array is extracted from the array by assuming the periodicity in transversal direction and introducing the perfect electric conductors in the external region. The uniform excitation over the finite array is synthesized iteratively to demonstrate the fast and accurate results by S2DS. A unit design model with the baffles is introduced to determine the initial parameters of the slot pair which accelerate the iteration. Experiment at 25.3 GHz demonstrates good uniformity of the aperture field distribution as well as the effects of the baffles. The directivity is 32.7 dB which corresponds to the aperture efficiency 90.5% and the reflection is below -15.0 dB over 1.3 GHz.
This paper investigates the performance of multiple monopole antennas mounted on a card-type terminal, which is expected to be used in the systems beyond 3 G, based on the calculated and measured radiation patterns for the 2.0 GHz. We characterize the feasible performance of quarter-wavelength monopole antennas mounted on a card-type terminal in a multiple antenna configuration with narrow element spacing of less than a half-wavelength assuming that the antennas used must satisfy the space restrictions of the mobile terminal. Performance figures of merit for the multiple antenna performance include the beamforming gain, correlation coefficient, and MIMO channel capacity. Furthermore, we investigate the influence of a finite ground plane on the characteristics of multiple monopole antennas using a typical antenna configuration comprising a simple finite ground plane and multiple monopole antennas to discuss the fundamental characteristics.
Qiaowei YUAN Qiang CHEN Kunio SAWAYA
MUSIC-based estimation of direction of arrival (DOA) using universal steering vector (USV) is experimentally studied. A four-element array antenna and a four-channel receiver are employed for the experiment. In order to improve the accuracy of DOA estimation, USV which has already included the effect of mutual coupling between array elements and effect of array elements themselves is compensated to further include the electric delay and loss of four channels in the receiver. The compensated USV (C-USV) approach proposed in this paper does not need the time-consuming measurement of array element pattern because the compensating matrix for USV is obtained by measuring the S parameters between RF input ports of the feeding cables and IF output ports of the receiver. The experimental results of MUSIC-based DOA estimation show that C-USV approach is an accurate, effective and practical method for the MUSIC-based DOA estimation.