The search functionality is under construction.

Keyword Search Result

[Keyword] navigation(78hit)

1-20hit(78hit)

  • Image Segmentation-Based Bicycle Riding Side Identification Method

    Jeyoen KIM  Takumi SOMA  Tetsuya MANABE  Aya KOJIMA  

     
    PAPER

      Pubricized:
    2022/11/02
      Vol:
    E106-A No:5
      Page(s):
    775-783

    This paper attempts to identify which side of the road a bicycle is currently riding on using a common camera for realizing an advanced bicycle navigation system and bicycle riding safety support system. To identify the roadway area, the proposed method performs semantic segmentation on a front camera image captured by a bicycle drive recorder or smartphone. If the roadway area extends from the center of the image to the right, the bicyclist is riding on the left side of the roadway (i.e., the correct riding position in Japan). In contrast, if the roadway area extends to the left, the bicyclist is on the right side of the roadway (i.e., the incorrect riding position in Japan). We evaluated the accuracy of the proposed method on various road widths with different traffic volumes using video captured by riding bicycles in Tsuruoka City, Yamagata Prefecture, and Saitama City, Saitama Prefecture, Japan. High accuracy (>80%) was achieved for any combination of the segmentation model, riding side identification method, and experimental conditions. Given these results, we believe that we have realized an effective image segmentation-based method to identify which side of the roadway a bicycle riding is on.

  • Semantic Path Planning for Indoor Navigation Tasks Using Multi-View Context and Prior Knowledge

    Jianbing WU  Weibo HUANG  Guoliang HUA  Wanruo ZHANG  Risheng KANG  Hong LIU  

     
    PAPER-Positioning and Navigation

      Pubricized:
    2022/01/20
      Vol:
    E106-D No:5
      Page(s):
    756-764

    Recently, deep reinforcement learning (DRL) methods have significantly improved the performance of target-driven indoor navigation tasks. However, the rich semantic information of environments is still not fully exploited in previous approaches. In addition, existing methods usually tend to overfit on training scenes or objects in target-driven navigation tasks, making it hard to generalize to unseen environments. Human beings can easily adapt to new scenes as they can recognize the objects they see and reason the possible locations of target objects using their experience. Inspired by this, we propose a DRL-based target-driven navigation model, termed MVC-PK, using Multi-View Context information and Prior semantic Knowledge. It relies only on the semantic label of target objects and allows the robot to find the target without using any geometry map. To perceive the semantic contextual information in the environment, object detectors are leveraged to detect the objects present in the multi-view observations. To enable the semantic reasoning ability of indoor mobile robots, a Graph Convolutional Network is also employed to incorporate prior knowledge. The proposed MVC-PK model is evaluated in the AI2-THOR simulation environment. The results show that MVC-PK (1) significantly improves the cross-scene and cross-target generalization ability, and (2) achieves state-of-the-art performance with 15.2% and 11.0% increase in Success Rate (SR) and Success weighted by Path Length (SPL), respectively.

  • SPSD: Semantics and Deep Reinforcement Learning Based Motion Planning for Supermarket Robot

    Jialun CAI  Weibo HUANG  Yingxuan YOU  Zhan CHEN  Bin REN  Hong LIU  

     
    PAPER-Positioning and Navigation

      Pubricized:
    2022/09/15
      Vol:
    E106-D No:5
      Page(s):
    765-772

    Robot motion planning is an important part of the unmanned supermarket. The challenges of motion planning in supermarkets lie in the diversity of the supermarket environment, the complexity of obstacle movement, the vastness of the search space. This paper proposes an adaptive Search and Path planning method based on the Semantic information and Deep reinforcement learning (SPSD), which effectively improves the autonomous decision-making ability of supermarket robots. Firstly, based on the backbone of deep reinforcement learning (DRL), supermarket robots process real-time information from multi-modality sensors to realize high-speed and collision-free motion planning. Meanwhile, in order to solve the problem caused by the uncertainty of the reward in the deep reinforcement learning, common spatial semantic relationships between landmarks and target objects are exploited to define reward function. Finally, dynamics randomization is introduced to improve the generalization performance of the algorithm in the training. The experimental results show that the SPSD algorithm is excellent in the three indicators of generalization performance, training time and path planning length. Compared with other methods, the training time of SPSD is reduced by 27.42% at most, the path planning length is reduced by 21.08% at most, and the trained network of SPSD can be applied to unfamiliar scenes safely and efficiently. The results are motivating enough to consider the application of the proposed method in practical scenes. We have uploaded the video of the results of the experiment to https://www.youtube.com/watch?v=h1wLpm42NZk.

  • Tourism Application Considering Waiting Time

    Daiki SAITO  Jeyeon KIM  Tetsuya MANABE  

     
    PAPER-Intelligent Transport System

      Pubricized:
    2022/09/06
      Vol:
    E106-A No:3
      Page(s):
    633-643

    Currently, the proportion of independent travel is increasing in Japan. Therefore, earlier studies supporting itinerary planning have been presented. However, these studies have only insufficiently considered rural tourism. For example, tourist often use public transportation during trips in rural areas, although it is often difficult for a tourist to plan an itinerary for public transportation. Even if an itinerary can be planned, it will entail long waiting times at the station or bus stop. Nevertheless, earlier studies have only insufficiently considered these elements in itinerary planning. On the other hand, navigation is necessary in addition to itinerary creation. Particularly, recent navigation often considers dynamic information. During trips using public transportation, schedule changes are important dynamic information. For example, tourist arrive at bus stop earlier than planned. In such case, the waiting time will be longer than the waiting time included in the itinerary. In contrast, if a person is running behind schedule, a risk arises of missing bus. Nevertheless, earlier studies have only insufficiently considered these schedule changes. In this paper, we construct a tourism application that considers the waiting time to improve the tourism experience in rural areas. We define waiting time using static waiting time and dynamic waiting time. Static waiting time is waiting time that is included in the itinerary. Dynamic waiting time is the waiting time that is created by schedule changes during a trip. With this application, static waiting times is considered in the planning function. The dynamic waiting time is considered in the navigation function. To underscore the effectiveness of this application, experiments of the planning function and experiments of the navigation function is conducted in Tsuruoka City, Yamagata Prefecture. Based on the results, we confirmed that a tourist can readily plan a satisfactory itinerary using the planning function. Additionally, we confirmed that Navigation function can use waiting times effectively by suggesting additional tourist spots.

  • Ground Test of Radio Frequency Compatibility for Cn-Band Satellite Navigation and Microwave Landing System Open Access

    Ruihua LIU  Yin LI  Ling ZOU  Yude NI  

     
    PAPER-Satellite Communications

      Pubricized:
    2022/05/19
      Vol:
    E105-B No:12
      Page(s):
    1580-1588

    Testing the radio frequency compatibility between Cn-band Satellite Navigation and Microwave Landing System (MLS) has included establishing a specific interference model and reporting the effect of such interference. This paper considers two interference scenarios according to the interfered system. By calculating the Power Flux Density (PFD) values, the interference for Cn-band satellite navigation downlink signal from several visible space stations on MLS service is evaluated. Simulation analysis of the interference for MLS DPSK-data word signal and scanning signal on Cn-band satellite navigation signal is based on the Spectral Separation Coefficient (SSC) and equivalent Carrier-to-Noise Ratio methodologies. Ground tests at a particular military airfield equipped with MLS ground stations were successfully carried out, and some measured data verified the theoretical and numerical results. This study will certainly benefit the design of Cn-band satellite navigation signals and guide the interoperability and compatibility research of Cn-band satellite navigation and MLS.

  • Study on Cloud-Based GNSS Positioning Architecture with Satellite Selection Algorithm and Report of Field Experiments

    Seiji YOSHIDA  

     
    PAPER-Satellite Navigation

      Pubricized:
    2021/10/13
      Vol:
    E105-B No:4
      Page(s):
    388-398

    Cloud-based Global Navigation Satellite Systems (CB-GNSS) positioning architecture that offloads part of GNSS positioning computation to cloud/edge infrastructure has been studied as an architecture that adds valued functions via the network. The merits of CB-GNSS positioning are that it can take advantage of the abundant computing resources on the cloud/edge to add unique functions to the positioning calculation and reduce the cost of GNSS receiver terminals. An issue in GNSS positioning is the degradation in positioning accuracy in unideal reception environments where open space is limited and some satellite signals are blocked. To resolve this issue, we propose a satellite selection algorithm that effectively removes the multipath components of blocked satellite signals, which are the main cause of drop in positioning accuracy. We build a Proof of Concept (PoC) test environment of CB-GNSS positioning architecture implementing the proposed satellite selection algorithm and conduct experiments to verify its positioning performance in unideal static and dynamic conditions. For static long-term positioning in a multipath signal reception environment, we found that CB-GNSS positioning with the proposed algorithm enables a low-end GNSS receiver terminal to match the positioning performance comparable to high-end GNSS receiver terminals in terms of the FIX rate. In an autonomous tractor driving experiment on a farm road crossing a windbreak, we succeeded in controlling the tractor's autonomous movement by maintaining highly precise positioning even in the windbreak. These results indicates that the proposed satellite selection algorithm achieves high positioning performance even in poor satellite signal reception environments.

  • Feasibility Study for Computer-Aided Diagnosis System with Navigation Function of Clear Region for Real-Time Endoscopic Video Image on Customizable Embedded DSP Cores

    Masayuki ODAGAWA  Tetsushi KOIDE  Toru TAMAKI  Shigeto YOSHIDA  Hiroshi MIENO  Shinji TANAKA  

     
    LETTER-VLSI Design Technology and CAD

      Pubricized:
    2021/07/08
      Vol:
    E105-A No:1
      Page(s):
    58-62

    This paper presents examination result of possibility for automatic unclear region detection in the CAD system for colorectal tumor with real time endoscopic video image. We confirmed that it is possible to realize the CAD system with navigation function of clear region which consists of unclear region detection by YOLO2 and classification by AlexNet and SVMs on customizable embedded DSP cores. Moreover, we confirmed the real time CAD system can be constructed by a low power ASIC using customizable embedded DSP cores.

  • Quinary Offset Carrier Modulations for Global Navigation Satellite System

    Wei LIU  Yuan HU  Tsung-Hsuan HSIEH  Jiansen ZHAO  Shengzheng WANG  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2020/11/20
      Vol:
    E104-B No:5
      Page(s):
    563-569

    In order to improve tracking, interference and multipath mitigation performance from that possible with existing signals, a new Global Navigation Satellite System (GNSS) signal is needed that can offer additional degrees of freedom for shaping its pulse waveform and spectrum. In this paper, a new modulation scheme called Quinary Offset Carrier modulation (QOC) is proposed as a new GNSS signal design. The pulse waveforms of QOC modulation are divided into two types: convex and concave waveforms. QOC modulations can be easily constructed by selecting different modulation parameters. The spectra and autocorrelation characteristics of QOC modulations are investigated and discussed. Simulations and analyses show that QOC modulation can achieve similar performance to traditional BOC modulation in terms of code tracking, anti-multipath, and compatibility. QOC modulation can provide a new option for satellite navigation signal design.

  • Route Calculation for Bicycle Navigation System Following Traffic Rules

    Taichi NAWANO  Tetsuya MANABE  

     
    LETTER

      Vol:
    E104-A No:2
      Page(s):
    366-370

    This paper proposes a route calculation method for a bicycle navigation system that complies with traffic regulations. The extension of the node map and three kinds of route calculation methods are constructed and evaluated on the basis of travel times and system acceptability survey results. Our findings reveal the effectiveness of the proposed route calculation method and the acceptability of the bicycle navigation system that included the method.

  • Algorithm-Hardware Co-Design of Real-Time Edge Detection for Deep-Space Autonomous Optical Navigation

    Hao XIAO  Yanming FAN  Fen GE  Zhang ZHANG  Xin CHENG  

     
    PAPER

      Pubricized:
    2020/06/15
      Vol:
    E103-D No:10
      Page(s):
    2047-2058

    Optical navigation (OPNAV) is the use of the on-board imaging data to provide a direct measurement of the image coordinates of the target as navigation information. Among the optical observables in deep-space, the edge of the celestial body is an important feature that can be utilized for locating the planet centroid. However, traditional edge detection algorithms like Canny algorithm cannot be applied directly for OPNAV due to the noise edges caused by surface markings. Moreover, due to the constrained computation and energy capacity on-board, light-weight image-processing algorithms with less computational complexity are desirable for real-time processing. Thus, to fast and accurately extract the edge of the celestial body from high-resolution satellite imageries, this paper presents an algorithm-hardware co-design of real-time edge detection for OPNAV. First, a light-weight edge detection algorithm is proposed to efficiently detect the edge of the celestial body while suppressing the noise edges caused by surface markings. Then, we further present an FPGA implementation of the proposed algorithm with an optimized real-time performance and resource efficiency. Experimental results show that, compared with the traditional edge detection algorithms, our proposed one enables more accurate celestial body edge detection, while simplifying the hardware implementation.

  • A Design Methodology Based on the Comprehensive Framework for Pedestrian Navigation Systems

    Tetsuya MANABE  Aya KOJIMA  

     
    PAPER-Intelligent Transport System

      Vol:
    E103-A No:9
      Page(s):
    1111-1119

    This paper describes designing a new pedestrian navigation system using a comprehensive framework called the pedestrian navigation concept reference model (PNCRM). We implement this system as a publicly-available smartphone application and evaluate its positioning performance near Omiya station's western entrance. We also evaluate users' subjective impressions of the system using a questionnaire. In both cases, promising results are obtained, showing that the PNCRM can be used as a tool for designing pedestrian navigation systems, allowing such systems to be created systematically.

  • Graph Based Wave Function Collapse Algorithm for Procedural Content Generation in Games

    Hwanhee KIM  Teasung HAHN  Sookyun KIM  Shinjin KANG  

     
    PAPER-Computer Graphics

      Pubricized:
    2020/05/20
      Vol:
    E103-D No:8
      Page(s):
    1901-1910

    This paper describes graph-based Wave Function Collapse algorithm for procedural content generation. The goal of this system is to enable a game designer to procedurally create key content elements in the game level through simple association rule input. To do this, we propose a graph-based data structure that can be easily integrated with a navigation mesh data structure in a three-dimensional world. With our system, if the user inputs the minimum association rule, it is possible to effectively perform procedural content generation in the three-dimensional world. The experimental results show that the Wave Function Collapse algorithm, which is a texture synthesis algorithm, can be extended to non-grid shape content with high controllability and scalability.

  • In-Vehicle Voice Interface with Improved Utterance Classification Accuracy Using Off-the-Shelf Cloud Speech Recognizer

    Takeshi HOMMA  Yasunari OBUCHI  Kazuaki SHIMA  Rintaro IKESHITA  Hiroaki KOKUBO  Takuya MATSUMOTO  

     
    PAPER-Speech and Hearing

      Pubricized:
    2018/08/31
      Vol:
    E101-D No:12
      Page(s):
    3123-3137

    For voice-enabled car navigation systems that use a multi-purpose cloud speech recognition service (cloud ASR), utterance classification that is robust against speech recognition errors is needed to realize a user-friendly voice interface. The purpose of this study is to improve the accuracy of utterance classification for voice-enabled car navigation systems when inputs to a classifier are error-prone speech recognition results obtained from a cloud ASR. The role of utterance classification is to predict which car navigation function a user wants to execute from a spontaneous utterance. A cloud ASR causes speech recognition errors due to the noises that occur when traveling in a car, and the errors degrade the accuracy of utterance classification. There are many methods for reducing the number of speech recognition errors by modifying the inside of a speech recognizer. However, application developers cannot apply these methods to cloud ASRs because they cannot customize the ASRs. In this paper, we propose a system for improving the accuracy of utterance classification by modifying both speech-signal inputs to a cloud ASR and recognized-sentence outputs from an ASR. First, our system performs speech enhancement on a user's utterance and then sends both enhanced and non-enhanced speech signals to a cloud ASR. Speech recognition results from both speech signals are merged to reduce the number of recognition errors. Second, to reduce that of utterance classification errors, we propose a data augmentation method, which we call “optimal doping,” where not only accurate transcriptions but also error-prone recognized sentences are added to training data. An evaluation with real user utterances spoken to car navigation products showed that our system reduces the number of utterance classification errors by 54% from a baseline condition. Finally, we propose a semi-automatic upgrading approach for classifiers to benefit from the improved performance of cloud ASRs.

  • GNSS Correction Using Altitude Map and Its Integration with Pedestrian Dead Reckoning

    Yuyang HUANG  Li-Ta HSU  Yanlei GU  Shunsuke KAMIJO  

     
    PAPER-Intelligent Transport System

      Vol:
    E101-A No:8
      Page(s):
    1245-1256

    Accurate pedestrian navigation remains a challenge in urban environments. GNSS receiver behaves poorly because the reflection and blockage of the GNSS signals by buildings or other obstacles. Integration of GNSS positioning and Pedestrian Dead Reckoning (PDR) could provide a more smooth navigation trajectory. However, the integration system cannot present the satisfied performance if GNSS positioning has large error. This situation often happens in the urban scenario. This paper focuses on improving the accuracy of the pedestrian navigation in urban environment using a proposed altitude map aided GNSS positioning method. Firstly, we use consistency check algorithm, which is similar to receiver autonomous integrity monitoring (RAIM) fault detection, to distinguish healthy and multipath contaminated measurements. Afterwards, the erroneous signals are corrected with the help of an altitude map. We called the proposed method altitude map aided GNSS. After correcting the erroneous satellite signals, the positioning mean error could be reduced from 17 meters to 12 meters. Usually, good performance for integration system needs accurately calculated GNSS accuracy value. However, the conventional GNSS accuracy calculation is not reliable in urban canyon. In this paper, the altitude map is also utilized to calculate the GNSS localization accuracy in order to indicate the reliability of the estimated position solution. The altitude map aided GNSS and accuracy are used in the integration with PDR system in order to provide more accurate and continuous positioning results. With the help of the proposed GNSS accuracy, the integration system could achieve 6.5 meters horizontal positioning accuracy in urban environment.

  • Energy-Efficient Mobile Video Delivery Utilizing Moving Route Navigation and Video Playout Buffer Control

    Kenji KANAI  Sakiko TAKENAKA  Jiro KATTO  Tutomu MURASE  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1635-1644

    Because mobile users demand a high quality and energy-friendly video delivery service that efficiently uses wireless resources, we introduce an energy-efficient video delivery system by applying moving route navigation and playout buffer control based on the mobile throughput history data. The proposed system first determines the optimal travel route to achieve high-speed and energy-efficient communications. Then when a user enters a high throughput area, our system temporarily extends the video playout buffer size, and the user aggressively downloads video segments via a high-speed and energy-efficient wireless connection until the extended buffer is filled. After leaving this area, the user consumes video segments from the extended buffer in order to keep smooth video playback without wireless communications. We carry out computer simulations, laboratory and field experiments and confirm that the proposed system can achieve energy-efficient mobile video delivery.

  • Real-Time Road-Direction Point Detection in Complex Environment

    Huimin CAI  Eryun LIU  Hongxia LIU  Shulong WANG  

     
    PAPER-Software System

      Pubricized:
    2017/11/13
      Vol:
    E101-D No:2
      Page(s):
    396-404

    A real-time road-direction point detection model is developed based on convolutional neural network architecture which can adapt to complex environment. Firstly, the concept of road-direction point is defined for either single road or crossroad. For single road, the predicted road-direction point can serve as a guiding point for a self-driving vehicle to go ahead. In the situation of crossroad, multiple road-direction points can also be detected which will help this vehicle to make a choice from possible directions. Meanwhile, different types of road surface can be classified by this model for both paved roads and unpaved roads. This information will be beneficial for a self-driving vehicle to speed up or slow down according to various road conditions. Finally, the performance of this model is evaluated on different platforms including Jetson TX1. The processing speed can reach 12 FPS on this portable embedded system so that it provides an effective and economic solution of road-direction estimation in the applications of autonomous navigation.

  • Personal Viewpoint Navigation Based on Object Trajectory Distribution for Multi-View Videos

    Xueting WANG  Kensho HARA  Yu ENOKIBORI  Takatsugu HIRAYAMA  Kenji MASE  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2017/10/12
      Vol:
    E101-D No:1
      Page(s):
    193-204

    Multi-camera videos with abundant information and high flexibility are useful in a wide range of applications, such as surveillance systems, web lectures, news broadcasting, concerts and sports viewing. Viewers can enjoy an enhanced viewing experience by choosing their own viewpoint through viewing interfaces. However, some viewers may feel annoyed by the need for continual manual viewpoint selection, especially when the number of selectable viewpoints is relatively large. In order to solve this issue, we propose an automatic viewpoint navigation method designed especially for sports. This method focuses on a viewer's personal preference for viewpoint selection, instead of common and professional editing rules. We assume that different trajectory distributions of viewing objects cause a difference in the viewpoint selection according to personal preference. We learn the relationship between the viewer's personal viewpoint-selection tendency and the spatio-temporal game context represented by the objects trajectories. We compare three methods based on Gaussian mixture model, SVM with a general histogram and SVM with a bag-of-words to seek the best learning scheme for this relationship. The performance of the proposed methods are evaluated by assessing the degree of similarity between the selected viewpoints and the viewers' edited records.

  • Precise Indoor Localization Method Using Dual-Facing Cameras on a Smart Device via Visible Light Communication

    Yohei NAKAZAWA  Hideo MAKINO  Kentaro NISHIMORI  Daisuke WAKATSUKI  Makoto KOBAYASHI  Hideki KOMAGATA  

     
    PAPER-Vision

      Vol:
    E100-A No:11
      Page(s):
    2295-2303

    In this paper, we propose a precise indoor localization method using visible light communication (VLC) with dual-facing cameras on a smart device (mobile phone, smartphone, or tablet device). This approach can assist the visually impaired with navigation, or provide mobile-robot control. The proposed method is different from conventional techniques in that dual-facing cameras are used to expand the localization area. The smart device is used as the receiver, and light-emitting diodes on the ceiling are used as localization landmarks. These are identified by VLC using a rolling shutter effect of complementary metal-oxide semiconductor image sensors. The front-facing camera captures the direct incident light of the landmarks, while the rear-facing camera captures mirror images of landmarks reflected from the floor face. We formulated the relationship between the poses (position and attitude) of the two cameras and the arrangement of landmarks using tilt detection by the smart device accelerometer. The equations can be analytically solved with a constant processing time, unlike conventional numerical methods, such as least-squares. We conducted a simulation and confirmed that the localization area was 75.6% using the dual-facing cameras, which was 3.8 times larger than that using only the front-facing camera. As a result of the experiment using two landmarks and a tablet device, the localization error in the horizontal direction was less than 98 mm at 90% of the measurement points. Moreover, the error estimation index can be used for appropriate route selection for pedestrians.

  • A Paper Book Type Input Device for Page Navigation in Digital Documents Open Access

    Shohei MASUNAGA  Xingya XU  Hiroki TERABE  Kazuo SHIBUTA  Hirohito SHIBATA  

     
    INVITED PAPER

      Vol:
    E100-C No:11
      Page(s):
    984-991

    This paper aims to support quick and easy page access in digital documents. We tried to use a paper book as a device to navigate pages for digital documents. Our proposed system allows the users to perform the same interaction as a paper book such as inserting fingers among pages or folding an edge of the page as a dog-ear. Three experiments were conducted to confirm the effectiveness of the proposed system. As a result, we confirmed our proposed system was superior to conventional navigation methods especially in moving back and forth among pages.

  • Positioning Error Reduction Techniques for Precision Navigation by Post-Processing

    Yu Min HWANG  Sun Yui LEE  Isaac SIM  Jin Young KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:10
      Page(s):
    2158-2161

    With the increasing demand of Internet-of-Things applicability in various devices and location-based services (LBSs) with positioning capabilities, we proposed simple and effective post-processing techniques to reduce positioning error and provide more precise navigation to users in a pedestrian environment in this letter. The proposed positioning error reduction techniques (Technique 1-minimum range securement and bounce elimination, Technique 2-direction vector-based error correction) were studied considering low complexity and wide applicability to various types of positioning systems, e.g., global positioning system (GPS). Through the real field tests in urban areas, we have verified that an average positioning error of the proposed techniques is significantly decreased compared to that of a GPS-only environment.

1-20hit(78hit)