The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] oscillation(77hit)

61-77hit(77hit)

  • An Advanced BSG Self-Aligned (A-BSA) Transistor Technology for High Speed IC Implementation

    Tsutomu TASHIRO  Mitsuhiro SUGIYAMA  Hisashi TAKEMURA  Chihiro OGAWA  Masakazu KURISU  Hideki KITAHATA  Takenori MORIKAWA  Masahiko NAKAMAE  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E79-C No:12
      Page(s):
    1733-1740

    This paper reports on a high-speed silicon bipolar transistor with an fT and fMAX of over 40 GHz, we call it the Advanced Boro-silicated-glass Self-Aligned (A-BSA) transistor. In basic BSA technology, a CVD-BSG film is used not only as a diffusion source to form the intrinsic base and the link base regions but also as a sidewall spacer between the emitter and the base polysilicon electrodes. An A-BSA transistor offers three advancements to this technology: (1) a graded collector profile underneath the intrinsic base region to suppress the Kirk effect; (2) an optimized design of the link base region to prevent the frade-off effect between fT and base resistance; and (3) a newly developed buried emitter electrode structure, consisting of an N++-polysilicon layer, a platinum silicide layer, and a CVD tungsten plug, to prevent the emitter plug effect. Furthermore, our transistor uses a BPSG filled trench isolation to reduce parasitic capacitance and improve circuit performance. In this paper, we describe device design, process technology and characterization of the A-BSA transistor, with it we have performed several application ICs, operating at 10Gb/s and above. The A-BSA transistor achieved an fT of 41 GHz and an fMAX of 44 GHz under optimized conditions.

  • The Upper Limit of a Parameter for a Two-Stroke Oscillator to Have a Stable Limit Cycle

    Yasumasa SUJAKU  Takahiro YAMADA  Tosiro KOGA  

     
    LETTER

      Vol:
    E79-A No:11
      Page(s):
    1851-1852

    A type of Lienard's equation +µf(x)+x=0, where f(x) is not an even function of x, is studied by Le Corbeiller as a model of various biological oscillations, such as breathing, and called two-stroke oscillators. A distinctive feature of this type of oscillators is that the parameter µ has the upper limit µ0 for the oscillator to have some stable limit cycle. This paper gives a numerical method for calculating this upper limit µ0.

  • Van der Pol Oscillators Coupled by Piecewise-Linear Negative Resistor Asynchronous Oscillations by Self-Modulation Effect

    Hiroyuki KANASUGI  Seiichiro MORO  Shinsaku MORI  

     
    PAPER-Nonlinear Circuits and Bifurcation

      Vol:
    E79-A No:10
      Page(s):
    1551-1562

    In this study, we investigate two oscillators which have the same natural frequency, mutually coupled by N-type piecewise-linear negative resistor. In this system, according to the negative range of the coupling negative resistor, the various inter-esting synchronization phenomena which are in-phase, opposite phase and doublemode-like oscillations are observed. Especially, we show doublemode-like oscillations that are not observed until now in mutually coupled van der Pol oscillators with the smooth cubic characteristics, although the ones with same natural frequencies are coupled. And we show the differences of the phenomena between two oscillators coupled by the smooth cubic negative resistor and the ones coupled by the piecewise-linear negative resistor.

  • Synchronization Phenomena in Resistively Coupled Oscillators with Different Frequencies

    Yoshinobu SETOU  Yoshifumi NISHIO  Akio USHIDA  

     
    PAPER-Nonlinear Circuits and Bifurcation

      Vol:
    E79-A No:10
      Page(s):
    1575-1580

    In this study, some oscillators with different oscillation frequencies, N - 1 oscillators have the same oscillation frequency and only the Nth oscillator has different frequency, coupled by a resistor are investigated. At first we consider nonresonance. By carrying out circuit experiments and computer calculations, we observe that oscillation of the Nth oscillator stops in some range of the frequency ratio and that others are synchronized as if the Nth oscillator does not exist. These phenomena are also analyzed theoretically by using the averaging method. Secondly, we investigate the resonance region where the fiequency ratio is nearly equal to 1. For this region we can observe interesting double-mode oscillation, that is, synchronization of envelopes of the double-mode oscillation and change of oscillation amplitude of the Nth oscillator.

  • The Role of Endoplasmic Reticulum in Genesis of Complex Oscillations in Pancreatic β-cells

    Teresa Ree CHAY  

     
    PAPER-Neural Nets and Human Being

      Vol:
    E79-A No:10
      Page(s):
    1595-1600

    In this paper, Chay's bursting pancreatic β-cell model is updated to include a role for [Ca2+]ER, the luminal calcium concentration in the endoplasmic reticulum (ER). The model contains a calcium current which is activated by voltage and inactivated by [Ca2+]i. It also contains a cationic nonselective current (INS) that is activated by depletion of luminal Ca2+ in the ER. In this model, [Ca2+]ER oscillates slowly, and this slow dynamic drives electrical bursting and the [Ca2+]i oscillations. This model is capable of providing answers to some puzzling phenomena,which the previous models could not (e. g., why do single pancreatic β-cells burst with a low frequency while the cells in an islet burst with a much higher frequency ?). Verification of the model prediction that [Ca2+]ER is a primary oscillator that drives electrical bursting and [Ca2+]i oscillations in pancreatic β-cells awaits experimental testing. Experiments using fluorescent dyes such as mag-fura-2-AM could provide relevant information.

  • Oscillation Modes in a Josephson Circuit and Its Application to Digital Systems

    Akinori KANASUGI  Mititada MORISUE  Hiroshi NOGUCHI  Masayuki YAMADAYA  Hajime FURUKAWA  

     
    PAPER-Superconductive digital integrated circuits

      Vol:
    E79-C No:9
      Page(s):
    1206-1212

    In this paper, oscillation modes produced in a Josephson circuit and its application to digital systems are described. The analysis is performed using an analog simulator to model the Josephson junction, in addition to computer simulation. The experimental results concerning oscillation modes agree well with the simulation results. The main advantage of the mapping for the oscillation modes is that it allows understanding of the relationships among oscillation modes and circuit parameters at first sight. In addition, a novel application of nonlinear oscillation to digital systems is described.

  • Implantable Temperature Measurement System Using the Parametron Phenomenon

    Yoshiaki SAITOH  Akira KANKE  Isamu SHINOZAKI  Tohru KIRYU  Jun'ichi HORI  

     
    PAPER-Measurement and Metrology

      Vol:
    E79-B No:8
      Page(s):
    1129-1134

    Adapting the principle of parametron oscillation, a small implantable temperature sensor requiring no internal power supply is described. Since this sensor's oscillation frequency is half that of the excitation frequency, the oscillated signal can be measured from the reception side, free of any signal, interference, simply by positioning the sensor and the excitation antenna so that; 1) they are separated up to 95 cm in the air; 2) a 41 cm gap, the phantom equivalent of the thickness of the human abdomen maintain between them. In the temperature-dependent quartz resonator sensor, oscillation occurs only when frequency and temperature correspond. The excitation power is then adjusted so that the frequency bandwidth narrows. As a result, the margin of error in measuring the temperature is minimized; (0.07).

  • Multimode Chaos in Two Coupled Chaotic Oscillators with Hard Nonlinearities

    Yoshifumi NISHIO  Akio USHIDA  

     
    PAPER-Nonlinear Problems

      Vol:
    E79-A No:2
      Page(s):
    227-232

    In this study, multimode chaos observed from two coupled chaotic oscillators with hard nonlinearities is investigated. At first, a simple chaotic oscillator with hard nonlinearities is realized. It is confirmed that in this chaotic oscillator the origin is always asymptotically stable and that the solution, which is excited by giving relatively large initial conditions, undergoes period-doubling bifurcations and bifurcates to chaos. Next, the coexistence of four different modes of oscillations are observed from two coupled chaotic oscillators with hard nonlinearities by both of circuit experiments and computer calculations. One of the modes of oscillation is a nonresonant double-mode oscillation and this oscillation is stably generated even in the case that oscillation is chaotic. Namely, for this oscillation mode, chaotic oscillation and periodic oscillation can be simultaneously excited. This phenomenon has not been reported yet, and we name this phenomenon as double-mode chaos. Finally, the beat frequency of the double-mode chaos is confirmed to be changed by varying the value of the coupling capacitor.

  • Bifurcation of the Delay Lock Loop in Spread Spectrum Communication

    Jiro ISHIKAWA  Hisato FUJISAKA  Chikara SATO  

     
    PAPER

      Vol:
    E78-A No:10
      Page(s):
    1281-1285

    It is important to analyze a tracking or synchronizing process in Spread Spectrum (SS) receiving system. The most common SS tracking system considered here consists of pseudorandom (PN) generator, Lowpass Filter (LPE) and Voltage Controlled Oscillator (VCO). The SS receiver is to track or synchronize its local PN generator to the received PN waveform by VCO. The fundamental equation of the system is known by a second order nonlinear differential equation in terms of phase difference between local PN generator and received PN waveform. The differential equation is nonautonoumous due to PN function of time t with period T. Picking up the gain of VCO as the main parameter in the system we show that the system has bifurcation from the normal oscillation through subharmonic oscillation to finally chaos. In the final case, chaos is confirmed by investigating maximum Liapunov number and both stable and unstable manifolds.

  • Analysis of High Power Amplifier Instability due to f0/2 Loop Oscillation

    Tadashi TAKAGI  Mitsuru MOCHIZUKI  Yukinobu TARUI  Yasushi ITOH  Seiichi TSUJI  Yasuo MITSUI  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    936-943

    A novel nonlinear analysis method of high power amplifier instability has been developed. This analysis method deals with a loop oscillation in a closed loop circuit and presents the conditions for oscillation under large-signal operation by taking account of mixing effect of FETs. Applying this analysis to the high power amplifier instability that an output power for the fundamental wave (f0-wave) decreases at some compression point where a half of the fundamental wave (f0/2-wave) is observed, it has been found that this instability is caused by an f0/2 loop oscillation. In addition, it has been verified by analysis and experiment that the oscillation can be removed by employing an isolation resistor in a closed loop circuit.

  • Synchronization Phenomena in Oscillators Coupled by One Resistor

    Seiichiro MORO  Yoshifumi NISHIO  Sinsaku MORI  

     
    PAPER-Nonlinear Circuits and Systems

      Vol:
    E78-A No:2
      Page(s):
    244-253

    There have been many investigations of mutual synchronization of oscillators. In this article, N oscillators with the same natural frequencies mutually coupled by one resistor are analyzed. In this system, various synchronization phenomena can be observed because the system tends to minimize the current through the coupling resistor. When the nonlinear characteristics are third-power, we can observe N-phase oscillation, and this system can take (N 1)! phase states. When the nonlinear characteristics are fifth-power, we can observe (N 1),(N 2)3 and 2-phase oscillations as well as N-phase oscillations and we can get much more phase states from this system than that of the system with third-power nonlinear characteristics. Because of their coupling structure and huge number of steady states of the system, our system would be a structural element of cellular neural networks. In this study, it is confirmed that our systems can stably take huge number of phase states by theoretical analysis, computer calculations and circuit experiments.

  • High-Performance Small-Scale Collector-Up AlGaAs/GaAs HBT's with a Carbon-Doped Base Fabricated Using Oxygen-Ion Implantation

    Shoji YAMAHATA  Yutaka MATSUOKA  Tadao ISHIBASHI  

     
    PAPER

      Vol:
    E77-C No:9
      Page(s):
    1437-1443

    We report the development of high-performance small-scale AlGaAs/GaAs collector-up heterojunction bipolar transistors (C-up HBT) with a carbon (C)-doped base layer. Oxygen-ion (O+) implantation is used to define their intrinsic emitter/base junctions and zinc (Zn)-diffusion is used to lower the resistivity of their O+-implanted extrinsic base layers. The highly resistive O+-implanted AlGaAs layer in the extrinsic emitter region sufficiently suppresses electron injection even under high-forward-bias conditions, allowing high collector current densities. The use of a C-doped base is especially effective for small-scale C-up HBT's because it suppresses the undesirable turn-on voltage shift caused by base dopant diffusion in the intrinsic area around the collector-mesa perimeter that occurs during the high-temperature Zn-diffusion process after implantation. Even in a small-scale trasistor with a 2 µm2 µm collector, a current gain of 15 is obtained. A microwave transistor with a 2 µm10 µm collector has a cutoff frequency fT of 68 GHz and a maximum oscillation frequency fmax of 102 GHz. A small-scale C-up HBT with a 2 µm2 µm collector shows a higher fmax of 110 GHz due to reduced base/collector capacitance CBC and its fmax remains above 100 GHz, even at a low collector current of 1 mA. The CBC of this device is estimated to be as low as 2.2 fF. Current gain dependence on collector size is also investigated for C-up HBT's and it is found that the base recombination current around the collector-mesa perimeter reduces the current gain.

  • Parametric Rotary Speed Sensor of Robust Motor Control

    Emenike C. EJIOGU  Kazuhiko ONO  Yorimoto TANNO  

     
    LETTER-Instrumentation and Control

      Vol:
    E77-C No:6
      Page(s):
    1012-1017

    If one of the R, L, or C Parameter of an RLC parallel circuit is changed periodically, under certain conditions, an oscillation called Parametric oscillation occurs. If one of remaining circuit elements is made to change due to an external cause (e.g. an external electric or magnetic field), then the parametric oscillation will experience some modulation. This modulation process and the subsequent demodulation can be exploited to create several types of sensors. In this letter, we describe the features of a new parametric magnetic speed sensor and its application in Induction motor robust control.

  • IC-Oriented Self-Aligned High-Performance AlGaAs/GaAs Ballistic Collection Transistors and Their Applications to High-Speed ICs

    Yutaka MATSUOKA  Shoji YAMAHATA  Satoshi YAMAGUCHI  Koichi MURATA  Eiichi SANO  Tadao ISHIBASHI  

     
    PAPER

      Vol:
    E76-C No:9
      Page(s):
    1392-1401

    This paper describes IC-oriented high-performance AlGaAs/GaAs heterojunction bipolar transistors that were fabricated to demonstrate their great potential in applications to high-speed integrated circuits. A collector structure of ballistic collection transistors with a launcher (LBCTs) shortens the intrinsic delay time of the transistors. A novel and simple self-aligned fabrication process, which features an base-metal-overlaid structure (BMO), reduces emitter- and base-resistances and collector capacitance. The combination of the thin-collector LBCT layer structure and the BMO self-alignment technology raises the average value of cutoff frequency, fT, to 160 GHz with a standard deviation as small as 4.3 GHz. By modifying collector thickness and using Pt/Ti/Pt/Au as the base ohmic contact metal in BMO-LBCTs, the maximum oscillation frequency, fmax, reaches 148 GHz with a 114 GHz fT. A 2:1 multiplexer with retiming D-type flip-flops (DFFs) at input/output stages fabricated on a wafer with the thin-collector LBCT structure operates at 19 Gbit/s. A monolithic preamplifier fabricated on the same wafer has a transimpedance of 52 dBΩ with a 3-dB-down bandwidth of 18.5 GHz and a gain S21 OF 21 dB with a 3-dB-down bandwidth of 19 GHz. Finally, a 40 Gbit/s selector IC and a 50 GHz dynamic frequency divider that were successfully fabricated using the 148-GHz fmax technologies are described.

  • Design Considerations for Low-Voltage Crystal Oscillator Circuit in a 1.8-V Single Chip Microprocessor

    Shigeo KUBOKI  Takehiro OHTA  Junichi KONO  Yoji NISHIO  

     
    PAPER

      Vol:
    E76-C No:5
      Page(s):
    701-707

    A low-voltage, high-speed 4-bit CMOS single chip microprocessor, with instruction execution time of 1.0µs at a power supply voltage of 1.8V, has been developed. A single chip processor generally includes crystal oscillation circuits to generate a system clock or a time-base clock. But when the operating voltage is lowered, it becomes difficult to get oscillations to start reliably and to continue stably. This paper describes a low voltage circuit design method for built-in crystal oscillators. Simple design equations for oscillation starting voltage and oscillation starting time are introduced. Then effects of the circuit device parameters, such as power supply voltage, loop gain values, and subthreshold swing S, on the low voltage performance of the crystal oscillators are considered. It is shown that the crystal oscillators operate in a tailing (subthreshold) region at voltages lower than about 1.8 V. Subthreshold swing, threshold voltage, and open loop gain have a significant influence on low voltage oscillation capability. This design method can be applied to crystal oscillators for a wide range of operating voltages.

  • Environment-Dependent Self-Organization of Positional Information in Coupled Nonlinear Oscillator System--A New Principle of Real-Time Coordinative Control in Biological Distributed System--

    Yoshihiro MIYAKE  Yoko YAMAGUCHI  Masafumi YANO  Hiroshi SHIMIZU  

     
    LETTER-Neural Nets--Theory and Applications--

      Vol:
    E76-A No:5
      Page(s):
    780-785

    The mechanism of environment-dependent self-organization of "positional information" in a coupled nonlinear oscillator system is proposed as a new principle of realtime coordinative control in biological distributed system. By modeling the pattern formation in tactic response of Physarum plasmodium, it is shown that a global phase gradient pattern self-organized by mutual entrainment encodes not only the positional relationship between subsystems and the total system but also the relative relationship between internal state of the system and the environment.

  • Bifurcation Phenomena of a Distributed Parameter System with a Nonlinear Element Having Negative Resistance

    Hideo NAKANO  Hideaki OKAZAKI  

     
    PAPER

      Vol:
    E75-A No:3
      Page(s):
    339-346

    Dynamic behavior of a distributed parameter system described by the one-dimensional wave equation with a nonlinear boundary condition is examined in detail using a graphical method proposed by Witt on a digital computer. The bifurcation diagram, homoclinic orbit and one-dimensional map are obtained and examined. Results using an analog simulator are introduced and compared with that of the graphical method. The discrepancy between these results is considered, and from the comparison among the bifurcation diagrams obtained by the graphical method, it is denoted that the energy dissipation in the system considerably restrains the chaotic state in the bifurcation process.

61-77hit(77hit)