The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] oscillation(77hit)

1-20hit(77hit)

  • Enhanced Oscillation Frequency in Series-Connected Resonant-Tunneling Diode-Oscillator Lattice Loop

    Koichi NARAHARA  Koichi MAEZAWA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/12/22
      Vol:
    E106-C No:7
      Page(s):
    395-404

    Series-connection of resonant-tunneling diodes (RTDs) has been considered to be efficient in upgrading the output power when it is introduced to oscillator architecture. This work is for clarifying the same architecture also contributes to increasing oscillation frequency because the device parasitic capacitance is reduced M times for M series-connected RTD oscillator. Although this mechanism is expected to be universal, we restrict the discussion to the recently proposed multiphase oscillator utilizing an RTD oscillator lattice loop. After explaining the operation principle, we evaluate how the oscillation frequency depends on the number of series-connected RTDs through full-wave calculations. In addition, the essential dynamics were validated experimentally in breadboarded multiphase oscillators using Esaki diodes in place of RTDs.

  • Terahertz Radiations and Switching Phenomena of Intrinsic Josephson Junctions in High-Temperature Superconductors: Josephson Phase Dynamics in Long- and Short-Ranged Interactions Open Access

    Itsuhiro KAKEYA  

     
    INVITED PAPER

      Pubricized:
    2022/12/07
      Vol:
    E106-C No:6
      Page(s):
    272-280

    Studies on intrinsic Josephson junctions (IJJs) of cuprate superconductors are reviewed. A system consisting of a few IJJs provides phenomena to test the Josephson phase dynamics and its interaction between adjacent IJJs within a nanometer scale, which is unique to cuprate superconductors. Quasiparticle density of states, which provides direct information on the Cooper-pair formation, is also revealed in the system. In contrast, Josephson plasma emission, which is an electromagnetic wave radiation in the sub-terahertz frequency range from an IJJ stack, arises from the synchronous phase dynamics of hundreds of IJJs coupled globally. This review summarizes a wide range of physical phenomena in IJJ systems having capacitive and inductive couplings with different nanometer and micrometer length scales, respectively.

  • Noise Suppression in SiC-MOSFET Body Diode Turn-Off Operation with Simple and Robust Gate Driver

    Hiroshi SUZUKI  Tsuyoshi FUNAKI  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2022/06/14
      Vol:
    E105-C No:12
      Page(s):
    750-760

    SiC-MOSFETs are being increasingly implemented in power electronics systems as low-loss, fast switching devices. Despite the advantages of an SiC-MOSFET, its large dv/dt or di/dt has fear of electromagnetic interference (EMI) noise. This paper proposes and demonstrates a simple and robust gate driver that can suppress ringing oscillation and surge voltage induced by the turn-off of the SiC-MOSFET body diode. The proposed gate driver utilizes the channel leakage current methodology (CLC) to enhance the damping effect by elevating the gate-source voltage (VGS) and inducing the channel leakage current in the device. The gate driver can self-adjust the timing of initiating CLC operation, which avoids an increase in switching loss. Additionally, the output voltage of the VGS elevation circuit does not need to be actively controlled in accordance with the operating conditions. Thus, the circuit topology is simple, and ringing oscillation can be easily attenuated with fixed circuit parameters regardless of operating conditions, minimizing the increase in switching loss. The effectiveness and versatility of proposed gate driver were experimentally validated for a wide range of operating conditions by double and single pulse switching tests.

  • On the Strength of Damping Effect in Online User Dynamics for Preventing Flaming Phenomena Open Access

    Shinichi KIKUCHI  Chisa TAKANO  Masaki AIDA  

     
    PAPER

      Pubricized:
    2021/09/01
      Vol:
    E105-B No:2
      Page(s):
    240-249

    As online social networks (OSNs) have become remarkably active, we often experience explosive user dynamics such as online flaming, which can significantly impact the real world. Since the rapidity with which online user dynamics propagates, countermeasures based on social analyses of the individuals who cause online flaming take too much time that timely measures cannot be taken. To consider immediate solutions without individuals' social analyses, a countermeasure technology for flaming phenomena based on the oscillation model, which describes online user dynamics, has been proposed. In this framework, the strength of damping to prevent online flaming was derived based on the wave equation of networks. However, the assumed damping strength was to be a constant independent of the frequency of user dynamics. Since damping strength may generally depend on frequency, it is necessary to consider such frequency dependence in user dynamics. In this paper, we derive the strength of damping required to prevent online flaming under the general condition that damping strength depends on the frequency of user dynamics. We also investigate the existence range of the Laplacian matrix's eigenvalues representing the OSN structure assumed from the real data of OSNs, and apply it to the countermeasure technology for online flaming.

  • Experimental Demonstration of a Hard-Type Oscillator Using a Resonant Tunneling Diode and Its Comparison with a Soft-Type Oscillator

    Koichi MAEZAWA  Tatsuo ITO  Masayuki MORI  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2021/06/07
      Vol:
    E104-C No:12
      Page(s):
    685-688

    A hard-type oscillator is defined as an oscillator having stable fixed points within a stable limit cycle. For resonant tunneling diode (RTD) oscillators, using hard-type configuration has a significant advantage that it can suppress spurious oscillations in a bias line. We have fabricated hard-type oscillators using an InGaAs-based RTD, and demonstrated a proper operation. Furthermore, the oscillating properties have been compared with a soft-type oscillator having a same parameters. It has been demonstrated that the same level of the phase noise can be obtained with a much smaller power consumption of approximately 1/20.

  • Basic Study of Both-Sides Retrodirective System for Minimizing the Leak Energy in Microwave Power Transmission Open Access

    Takayuki MATSUMURO  Yohei ISHIKAWA  Naoki SHINOHARA  

     
    PAPER

      Vol:
    E102-C No:10
      Page(s):
    659-665

    In the beam-type microwave power transmission system, it is required to minimize the interference with communication and the influence on the human body. Retrodirective system that re-radiates a beam in the direction of arrival of a signal is well known as a beam control technique for accurate microwave power transmission. In this paper, we newly propose to apply the retrodirective system to both transmitting and receiving antennas. The leakage to the outside of the system is expected to minimize self-convergently while following the atmospheric fluctuation and the antenna movement by repeating the retrodirective between the transmitting and receiving antenna in this system. We considered this phenomenon theoretically using an infinite array antenna model. Finally, it has been shown by the equivalent circuit simulation that stable transmission can be realized by oscillating the system.

  • Neural Oscillation-Based Classification of Japanese Spoken Sentences During Speech Perception

    Hiroki WATANABE  Hiroki TANAKA  Sakriani SAKTI  Satoshi NAKAMURA  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2018/11/14
      Vol:
    E102-D No:2
      Page(s):
    383-391

    Brain-computer interfaces (BCIs) have been used by users to convey their intentions directly with brain signals. For example, a spelling system that uses EEGs allows letters on a display to be selected. In comparison, previous studies have investigated decoding speech information such as syllables, words from single-trial brain signals during speech comprehension, or articulatory imagination. Such decoding realizes speech recognition with a relatively short time-lag and without relying on a display. Previous magnetoencephalogram (MEG) research showed that a template matching method could be used to classify three English sentences by using phase patterns in theta oscillations. This method is based on the synchronization between speech rhythms and neural oscillations during speech processing, that is, theta oscillations synchronized with syllabic rhythms and low-gamma oscillations with phonemic rhythms. The present study aimed to approximate this classification method to a BCI application. To this end, (1) we investigated the performance of the EEG-based classification of three Japanese sentences and (2) evaluated the generalizability of our models to other different users. For the purpose of improving accuracy, (3) we investigated the performances of four classifiers: template matching (baseline), logistic regression, support vector machine, and random forest. In addition, (4) we propose using novel features including phase patterns in a higher frequency range. Our proposed features were constructed in order to capture synchronization in a low-gamma band, that is, (i) phases in EEG oscillations in the range of 2-50 Hz from all electrodes used for measuring EEG data (all) and (ii) phases selected on the basis of feature importance (selected). The classification results showed that, except for random forest, most classifiers perform similarly. Our proposed features improved the classification accuracy with statistical significance compared with a baseline feature, which is a phase pattern in neural oscillations in the range of 4-8 Hz from the right hemisphere. The best mean accuracy across folds was 55.9% using template matching trained by all features. We concluded that the use of phase information in a higher frequency band improves the performance of EEG-based sentence classification and that this model is applicable to other different users.

  • How to Decide Window-Sizes of Smoothing Methods: A Goodness of Fit Criterion for Smoothing Oscillation Data

    Kenichi SHIBATA  Takashi AMEMIYA  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    143-146

    Organic electronics devices can be applicable to implant sensors. The noises in the acquired data can be removed by smoothing using sliding windows. We developed a new criterion for window-size decision based on smoothness and similarity (SSC). The smoothed curve fits the raw data well and is sufficiently smooth.

  • Revealing of the Underlying Mechanism of Different Node Centralities Based on Oscillation Dynamics on Networks

    Chisa TAKANO  Masaki AIDA  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/02/01
      Vol:
    E101-B No:8
      Page(s):
    1820-1832

    In recent years, with the rapid development of the Internet and cloud computing, an enormous amount of information is exchanged on various social networking services. In order to handle and maintain such a mountain of information properly by limited resources in the network, it is very important to comprehend the dynamics for propagation of information or activity on the social network. One of many indices used by social network analysis which investigates the network structure is “node centrality”. A common characteristic of conventional node centralities is that it depends on the topological structure of network and the value of node centrality does not change unless the topology changes. The network dynamics is generated by interaction between users whose strength is asymmetric in general. Network structure reflecting the asymmetric interaction between users is modeled by a directed graph, and it is described by an asymmetric matrix in matrix-based network model. In this paper, we showed an oscillation model for describing dynamics on networks generated from a certain kind of asymmetric interaction between nodes by using a symmetric matrix. Moreover, we propose a new extended index of well-known two node centralities based on the oscillation model. In addition, we show that the proposed index can describe various aspect of node centrality that considers not only the topological structure of the network, but also asymmetry of links, the distribution of source node of activity, and temporal evolution of activity propagation by properly assigning the weight of each link. The proposed model is regarded as the fundamental framework for different node centralities.

  • Possibilities of Large Voltage Swing Hard-Type Oscillators Based on Series-Connected Resonant Tunneling Diodes

    Koichi MAEZAWA  Masayuki MORI  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    305-310

    Hard-type oscillators for ultrahigh frequency applications were proposed based on resonant tunneling diodes (RTDs) and a HEMT trigger circuit. The hard-type oscillators initiate oscillation only after external excitation. This is advantageous for suppressing the spurious oscillation in the bias line, which is one of the most significant problems in the RTD oscillators. We first investigated a series-connected circuit of a resistor and an RTD for constructing a hard-type oscillator. We carried out circuit simulation using the practical device parameters. It was demonstrated that the stable oscillation can be obtained for such oscillators. Next, we proposed to use series-connected RTDs for the gain block of the hard-type oscillators. The series circuits of RTDs show the negative differential resistance in very narrow regions, or no regions at all, which makes impossible to use such circuits for the conventional soft-type oscillators. However, with the trigger circuit, they can be used for hard-type oscillators. We confirmed the oscillation and the bias stability of these oscillators, and also demonstrated that the voltage swing can be easily increased by increasing the number of RTDs connected in series. This is promising method to overcome the power restriction of the RTD oscillators.

  • Experimental Study of Mixed-Mode Oscillations in a Four-Segment Piecewise Linear Bonhoeffer-van der Pol Oscillator under Weak Periodic Perturbation -Successive and Nonsuccessive MMO-Incrementing Bifurcations-

    Tri Quoc TRUONG  Tadashi TSUBONE  Kuniyasu SHIMIZU  Naohiko INABA  

     
    PAPER-Nonlinear Problems

      Vol:
    E100-A No:7
      Page(s):
    1522-1531

    This report presents experimental measurements of mixed-mode oscillations (MMOs) generated by a weakly driven four-segment piecewise linear Bonhoeffer-van der Pol (BVP) oscillator. Such a roughly approximated simple piecewise linear circuit can generate MMOs and mixed-mode oscillation-incrementing bifurcations (MMOIBs). The laboratory experiments well agree with numerical results. We experimentally and numerically observe time series and Lorenz plots of MMOs generated by successive and nonsuccessive MMOIBs.

  • Analysis of Relaxation Oscillation in a Resonant Tunneling Diode Integrated with a Bow-Tie Antenna

    Naoto OKUMURA  Kiyoto ASAKAWA  Michihiko SUHARA  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    430-438

    In general, tunnel diodes exhibit various types of oscillation mode: the sinusoidal mode or the nonsinusoidal mode which is known as the relaxation oscillation (RO) mode. We derive a condition for generating the RO in resonant tunneling diodes (RTDs) with essential components for equivalent circuit model. A conditional equation to obtain sufficient nonlinearity towards the robust RO is clarified. Moreover, its condition also can be applied in case of a bow-tie antenna integrated RTD, thus a design policy to utilize the RO region for the antenna integrated RTD is established by numerical evaluations of time-domain large-signal nonlinear analysis towards a terahertz transmitter for broadband wireless communications.

  • A 1.9GHz Low-Phase-Noise Complementary Cross-Coupled FBAR-VCO without Additional Voltage Headroom in 0.18µm CMOS Technology

    Guoqiang ZHANG  Awinash ANAND  Kousuke HIKICHI  Shuji TANAKA  Masayoshi ESASHI  Ken-ya HASHIMOTO  Shinji TANIGUCHI  Ramesh K. POKHAREL  

     
    PAPER

      Vol:
    E100-C No:4
      Page(s):
    363-369

    A 1.9GHz film bulk acoustic resonator (FBAR)-based low-phase-noise complementary cross-coupled voltage-controlled oscillator (VCO) is presented. The FBAR-VCO is designed and fabricated in 0.18µm CMOS process. The DC latch and the low frequency instability are resolved by employing the NMOS source coupling capacitor and the DC blocked cross-coupled pairs. Since no additional voltage headroom is required, the proposed FBAR-VCO can be operated at a low power supply voltage of 1.1V with a wide voltage swing of 0.9V. An effective phase noise optimization is realized by a reasonable trade-off between the output resistance and the trans-conductance of the cross-coupled pairs. The measured performance shows the proposed FBAR-VCO achieves a phase noise of -148dBc/Hz at 1MHz offset with a figure of merit (FoM) of -211.6dB.

  • A Prediction-Based Approach to Moving-Phenomenon Monitoring Using Mobile Sensor Nodes

    Duc Van LE  Hoon OH  Seokhoon YOON  

     
    PAPER-Network

      Vol:
    E99-B No:8
      Page(s):
    1754-1762

    Deploying a group of mobile sensor (MS) nodes to monitor a moving phenomenon in an unknown and open area includes a lot of challenges if the phenomenon moves quickly and due to the limited capabilities of MS nodes in terms of mobility, sensing and communication ranges. To address these challenges and achieve a high weighted sensing coverage, in this paper, we propose a new algorithm for moving-phenomenon monitoring, namely VirFID-MP (Virtual Force (VF)-based Interest-Driven phenomenon monitoring with Mobility Prediction). In VirFID-MP, the future movement of the phenomenon is first predicted using the MS nodes' movement history data. Then, the prediction information is used to calculate a virtual force, which is utilized to speed up MS nodes toward the moving phenomenon. In addition, a prediction-based oscillation-avoidance algorithm is incorporated with VirFID-MP movement control to reduce the nodes' energy consumption. Our simulation results show that VirFID-MP outperforms original VirFID schemes in terms of weighted coverage efficiency and energy consumption.

  • Impact and High-Pitch Noise Suppression Based on Spectral Entropy

    Arata KAWAMURA  Noboru HAYASAKA  Naoto SASAOKA  

     
    PAPER-Engineering Acoustics

      Vol:
    E99-A No:4
      Page(s):
    777-787

    We propose an impact and high-pitch noise-suppression method based on spectral entropy. Spectral entropy takes a large value for flat spectral amplitude and a small value for spectra with several lines. We model the impact noise as a flat spectral signal and its damped oscillation as a high-pitch periodic signal consisting of spectra with several lines. We discriminate between the current noise situations by using spectral entropy and adaptively change the noise-suppression parameters used in a zero phase-based impact-noise-suppression method. Simulation results show that the proposed method can improve the perceptual evaluation of the speech quality and speech-recognition rate compared to conventional methods.

  • A Sensor-Based Data Visualization System for Training Blood Pressure Measurement by Auscultatory Method

    Chooi-Ling GOH  Shigetoshi NAKATAKE  

     
    PAPER

      Pubricized:
    2016/01/14
      Vol:
    E99-D No:4
      Page(s):
    936-943

    Blood pressure measurement by auscultatory method is a compulsory skill that is required by all healthcare practitioners. During the measurement, they must concentrate on recognizing the Korotkoff sounds, looking at the sphygmomanometer scale, and constantly deflating the cuff pressure simultaneously. This complex operation is difficult for the new learners and they need a lot of practice with the supervisor in order to guide them on their measurements. However, the supervisor is not always available and consequently, they always face the problem of lack of enough training. In order to help them mastering the skill of measuring blood pressure by auscultatory method more efficiently and effectively, we propose using a sensor device to capture the signals of Korotkoff sounds and cuff pressure during the measurement, and display the signal changes on a visualization tool through wireless connection. At the end of the measurement, the learners can verify their skill on deflation speed and recognition of Korotkoff sounds using the graphical view, and compare their measurements with the machine instantly. By using this device, the new learners do not need to wait for their supervisor for training but can practice with their colleagues more frequently. As a result, they will be able to acquire the skill in a shorter time and be more confident with their measurements.

  • A Zero Phase Noise Reduction Method with Damped Oscillation Estimator

    Sayuri KOHMURA  Arata KAWAMURA  Youji IIGUNI  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:10
      Page(s):
    2033-2042

    This paper proposes a noise reduction method for impact noise with damped oscillation caused by clinking a glass, hitting a bottle, and so on. The proposed method is based on the zero phase (ZP) signal defined as the IDFT of the spectral amplitude. When the target noise can be modeled as the sum of the impact part and the damped oscillation part, the proposed method can reduce them individually. First, the proposed method estimates the damped oscillation spectra and subtracts them from the observed spectra. Then, the impact part is reduced by replacing several samples of the ZP observed signal. Simulation results show that the proposed method improved 10dB of SNR of real impact noise.

  • Evaluation of Basic Dynamical Parameters in Printed Circuit Board — Mass, Force, and Acceleration —

    Shin-ichi WADA  Koichiro SAWA  

     
    PAPER

      Vol:
    E96-C No:9
      Page(s):
    1165-1172

    The authors have developed a mechanism that applies real vibration to electrical contacts by hammering oscillation in the vertical direction similar to that in real cases, and they have studied the effects of micro-oscillation on the contacts using the mechanism. It is shown that the performance of the hammering oscillation mechanism (HOM) for measuring acceleration and force is superior to that of other methods in terms of the stability of data. Using the mechanism, much simpler and more practical protocols are proposed for evaluating acceleration, force, and mass using only the measured acceleration. It is also indicated that the relationship between the inertial force generated by the hammering oscillation mechanism and the frictional force in electrical devices attached on a board is related to one of the causes of the degradation of electrical contacts under the effect of external micro-oscillation.

  • Clinical Application of Neuromagnetic Recordings: From Functional Imaging to Neural Decoding Open Access

    Masayuki HIRATA  Toshiki YOSHIMINE  

     
    INVITED PAPER

      Vol:
    E96-C No:3
      Page(s):
    313-319

    Magnetoencephalography (MEG) measures very weak neuromagnetic signals using SQUID sensors. Standard MEG analyses include averaged waveforms, isofield maps and equivalent current dipoles. Beamforming MEG analyses provide us with frequency-dependent spatiotemporal information about the cerebral oscillatory changes related to not only somatosensory processing but also language processing. Language dominance is able to be evaluated using laterality of power attenuation in the low γ band in the frontal area. Neuromagnetic signals of the unilateral upper movements are able to be decoded using a support vector machine.

  • Beating Analysis of Shubnikov de Haas Oscillation in In0.53Ga0.47As Double Quantum Well toward Spin Filter Applications Open Access

    Takaaki KOGA  Toru MATSUURA  Sébastien FANIEL  Satofumi SOUMA  Shunsuke MINESHIGE  Yoshiaki SEKINE  Hiroki SUGIYAMA  

     
    INVITED PAPER

      Vol:
    E95-C No:5
      Page(s):
    770-776

    We recently determined the values of intrinsic spin-orbit (SO) parameters for In0.52Al0.48As/In0.53Ga0.47As(10 nm)/In0.52Al0.48As (InGaAs/InAlAs) quantum wells (QW), lattice-matched to (001) InP, from the weak localization/antilocalization analysis of the low-temperature magneto-conductivity measurements [1]. We have then studied the subband energy spectra for the InGaAs/InAlAs double QW system from beatings in the Shubnikov de Haas (SdH) oscillations. The basic properties obtained here for the double QW system provides useful information for realizing nonmagnetic spin-filter devices based on the spin-orbit interaction [2].

1-20hit(77hit)