The search functionality is under construction.

Keyword Search Result

[Keyword] pillar(11hit)

1-11hit
  • Microneedle of Biodegradable Polyacid Anhydride with a Capillary Open Groove for Reagent Transfer

    Satomitsu IMAI  Kazuki CHIDAISYO  Kosuke YASUDA  

     
    BRIEF PAPER

      Pubricized:
    2022/11/28
      Vol:
    E106-C No:6
      Page(s):
    248-252

    Incorporating a tool for administering medication, such as a syringe, is required in microneedles (MNs) for medical use. This renders it easier for non-medical personnel to administer medication. Because it is difficult to fabricate a hollow MN, we fabricated a capillary groove on an MN and its substrate to enable the administration of a higher dosage. MN grooving is difficult to accomplish via the conventional injection molding method used for polylactic acid. Therefore, biodegradable polyacid anhydride was selected as the material for the MN. Because polyacid anhydride is a low-viscosity liquid at room temperature, an MN can be grooved using a processing method similar to vacuum casting. This study investigated the performance of the capillary force of the MN and the optimum shape and size of the MN by a puncture test.

  • A Note on Harmonious Coloring of Caterpillars

    Asahi TAKAOKA  Shingo OKUMA  Satoshi TAYU  Shuichi UENO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2015/08/28
      Vol:
    E98-D No:12
      Page(s):
    2199-2206

    The harmonious coloring of an undirected simple graph is a vertex coloring such that adjacent vertices are assigned different colors and each pair of colors appears together on at most one edge. The harmonious chromatic number of a graph is the least number of colors used in such a coloring. The harmonious chromatic number of a path is known, whereas the problem to find the harmonious chromatic number is NP-hard even for trees with pathwidth at most 2. Hence, we consider the harmonious coloring of trees with pathwidth 1, which are also known as caterpillars. This paper shows the harmonious chromatic number of a caterpillar with at most one vertex of degree more than 2. We also show the upper bound of the harmonious chromatic number of a 3-regular caterpillar.

  • On the Minimum Caterpillar Problem in Digraphs

    Taku OKADA  Akira SUZUKI  Takehiro ITO  Xiao ZHOU  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E97-A No:3
      Page(s):
    848-857

    Suppose that each arc in a digraph D = (V,A) has two costs of non-negative integers, called a spine cost and a leaf cost. A caterpillar is a directed tree consisting of a single directed path (of spine arcs) and leaf vertices each of which is incident to the directed path by exactly one incoming arc (leaf arc). For a given terminal set K ⊆ V, we study the problem of finding a caterpillar in D such that it contains all terminals in K and its total cost is minimized, where the cost of each arc in the caterpillar depends on whether it is used as a spine arc or a leaf arc. In this paper, we first show that the problem is NP-hard for any fixed constant number of terminals with |K| ≥ 3, while it is solvable in polynomial time for at most two terminals. We also give an inapproximability result for any fixed constant number of terminals with |K| ≥ 3. Finally, we give a linear-time algorithm to solve the problem for digraphs with bounded treewidth, where the treewidth for a digraph D is defined as the one for the underlying graph of D. Our algorithm runs in linear time even if |K| = O(|V|), and the hidden constant factor of the running time is just a single exponential of the treewidth.

  • Enabling Light Emission from Si Based MOSLED on Surface Nano-Roughened Si Substrate

    Gong-Ru LIN  

     
    INVITED PAPER

      Vol:
    E91-C No:2
      Page(s):
    173-180

    The historical review of Taiwan's researching activities on the features of PECVD grown SiOx are also included to realize the performance of Si nanocrystal based MOSLED made by such a Si-rich SiOx film with embedded Si nanocrystals on conventional Si substrate. A surface nano-roughened Si substrate with interfacial Si nano-pyramids at SiOx/Si interface are also reviewed, which provide the capabilities of enhancing the surface roughness induced total-internal-reflection relaxation and the Fowler-Nordheim tunneling based carrier injection. These structures enable the light emission and extraction from a metal-SiOx-Si MOSLED.

  • Path Coloring on Binary Caterpillars

    Hiroaki TAKAI  Takashi KANATANI  Akira MATSUBAYASHI  

     
    PAPER-Algorithm Theory

      Vol:
    E89-D No:6
      Page(s):
    1906-1913

    The path coloring problem is to assign the minimum number of colors to a given set P of directed paths on a given symmetric digraph D so that no two paths sharing an arc have the same color. The problem has applications to efficient assignment of wavelengths to communications on WDM optical networks. In this paper, we show that the path coloring problem is NP-hard even if the underlying graph of D is restricted to a binary caterpillar. Moreover, we give a polynomial time algorithm which constructs, given a binary caterpillar G and a set P of directed paths on the symmetric digraph associated with G, a path coloring of P with at most colors, where L is the maximum number of paths sharing an edge. Furthermore, we show that no local greedy path coloring algorithm on caterpillars in general uses less than colors.

  • Abstraction and Optimization of Consistent Floorplanning with Pillar Block Constraints

    Ning FU  Shigetoshi NAKATAKE  Yasuhiro TAKASHIMA  Yoji KAJITANI  

     
    PAPER-Floorplan

      Vol:
    E87-A No:12
      Page(s):
    3224-3232

    The success in topdown design of recent huge system LSIs is in a seamless transfer of the information resulted from the high level design to the lower level of floorplanning. For the purpose, we introduce a new concept abstract floorplan which is included in the output of high level design. From the abstract floorplan, the pillar blocks are derived which are critical sets of blocks that are expected to determine the width and height of the chip, named the frame. Since the frame and pillar blocks are obtained in the high level stage, they are useful to keep the consistency in the low level physical design if we apply optimization regarding them as constraints. Experiments to MCNC benchmarks showed that abstract floorplanning by pillar blocks output a placement faithful to the one physically optimized block placement with respect to the chip area and the wire-length.

  • Study on Elemental Technologies for Creation of Healthcare Chip Fabricated on Polyethylene Terephthalate Plate

    Akio OKI  Yuzuru TAKAMURA  Takayuki FUKASAWA  Hiroki OGAWA  Yoshitaka ITO  Takanori ICHIKI  Yasuhiro HORIIKE  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1801-1806

    Elemental technologies have been studied to establish the healthcare chip which is an intelligent micro analytical system to detect human health markers from a trail of blood. A two steps process for deep quartz dry-etching was discussed in order to overcome the issues of concave-shaped defects at the bottom of grooves. A coating with 2-methacryloyloxyethylphosphorylcholine (MPC) polymer was studied to suppress the adsorption of bio-substance onto the inner wall of the flow channel on chip and good bio-compatibility was achieved for suppression of protein adsorption and blood cell adhesion. A prototype of healthcare chip was fabricated on polyethylene terephthalate (PET) plate using a micro molding technique. Using this chip, the ion concentrations of pH, Na+, K+, Ca++ were successfully measured with embedded ion sensitive field effect transistors (ISFET's).

  • Interconnection of Stacked Layers by Bumpless Wiring in Wafer-Level Three-Dimensional Device

    Akinobu SATOH  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1746-1755

    This paper describes the wafer-level, three-dimensional packaging for MEMS in which sensors, actuators, electronic circuits and other functions are combined together in one integrated block. Si wafers with built-in MEMS functions were integrated with no change in thickness to ensure mechanical strength and improve heat dissipation. In the entire process of three-dimensional integration, Si wafers were processed at temperatures below 400C to prevent degradation of their built-in functions. A description is made of the low-temperature oxidation technology developed by us, which makes through-holes of high density and high aspect ratio in Si wafers with built-in functions by the Optical Excitation Electropolishing Method (OEEM) and forms an oxide film on the hole walls simply by replacing electrolyte. Next, a description is presented of the bumpless interconnection method which fills through-holes of stacked layers with metal by the molten metal suction method and of the electrocapillary effect as a countermeasure to prevent the filler metal from dropping out of holes under its own weight.

  • Assessment of Fatigue by Pupillary Response

    Atsuo MURATA  

     
    PAPER-Systems and Control

      Vol:
    E80-A No:7
      Page(s):
    1318-1323

    This study was conducted to assess the relationship between fatigue and pupillary responses. Pupillary responses, ECG and blood pressure were measured for 24 hours every 30 min in 8 subjects. A questionnaire was used to rate subjective feeling of fatigue. Twenty-four hours were divided equally into four 6-hour blocks. Subjective feeling of fatigue increased markedly in the fourth block, and the difference in subjective fatigue between fourth and first blocks was significant. Of nine pupillary responses, the pupil diameter was found to decrease with time. With respect to the function of the autonomic nervous system such as heart rate, systolic blood pressure and diastolic blood pressure, only heart rate was found to be sensitive to the increased subjective feeling of fatigue. A significant difference was found in the mean pupil diameter and mean heart rate between the last and first blocks. This result indicates that pupil diameter is related to fatigue and can be used to assess fatigue. Possible implications for fatigue assessment are discussed.

  • Bifurcation of an Inductively Coupled Josephson Junction Circuit

    Tetsushi UETA  Hiroshi KAWAKAMI  

     
    PAPER-Analysis of Nonlinear Circuits and Systems

      Vol:
    E77-A No:11
      Page(s):
    1758-1763

    Some qualitative properties of an inductively coupled circuit containing two Josephson junction elements with a dc source are investigated. The system is described by a four–dimensional autonomous differential equation. However, the phase space can be regarded as S1×R3 because the system has a periodicity for the invariant transformation. In this paper, we study the properties of periodic solutions winding around S1 as a bifurcation problem. Firstly, we analyze equilibria in this system. The bifurcation diagram of equilibria and its topological classification are given. Secondly, the bifurcation diagram of the periodic solutions winding around S1 are calculated by using a suitable Poincar mapping, and some properties of periodic solutions are discussed. From these analyses, we clarify that a periodic solution so–called "caterpillar solution" is observed when the two Josephson junction circuits are weakly coupled.

  • Electrocapillarity Optical Switch

    Makoto SATO  

     
    PAPER

      Vol:
    E77-B No:2
      Page(s):
    197-203

    To realize a high performance optical subscriber network a route reconnect switch is desired which has bistability, polarization and wavelength independence and compactness. This paper proposes an electrocapillarity optical (ECO) switch, in which a micro-mirror formed by a mercury droplet is driven by electrocapillarity. This switch has a potential for use in bistable waveguide matrix switches, which are suitable for route reconnection in the optical subscriber network. A theoretical model is presented that the driving force of the electrocapillarity originates in an electrically induced gradient in the surface tension of the mercury-electrolyte interface where an electrical double layer is formed. The experimentally obtained relation between the flow velocity of a mercury droplet and the electric current in an electrocapillary system is well described by this model. A prototype of the ECO switch is made using a resin molded single-mode fiber with a slit sawed in it in which a electrocapillary system is made. Optical switching is demonstrated and possible improvements in switching performance are discussed.