Haonan CHEN Akito IGUCHI Yasuhide TSUJI
In order to calculate photonic devices with slowly varying waveguide structure along propagation direction, we develop finite element beam propagation method (FE-BPM) with coordinate transformation. In this approach, converting a longitudinally varying waveguide into the equivalent straight waveguide, cumbersome processes in FE-BPM, such as mesh updating and field interpolation processes at each propagation step, can be avoided. We employ this simulation technique in shape optimization of photonic devices and show design examples of mode converter. To show the validity of this approach, the calculated results of designed devices are compared with the finite element method (FEM) or the standard FE-BPM.
Hyunuk AHN Akito IGUCHI Keita MORIMOTO Yasuhide TSUJI
We develop new 3D full vectorial finite element bidirectional beam propagation method (3DFV-BiBPM) in order to handle the nonradiative dielectric waveguide (NRD guide) components where waveguide profile varies in the direction perpendicular to the parallel metal plates. The BiBPM is one of the transfer-matrix-based methods where only transverse cross sections have to be discretized using the finite difference or the finite element scheme, and it can treat backward and multiple reflections as opposed to the standard BPM. An NRD guide with air-gap and a filter with a sapphire resonator are numerically analyze considering dielectric losses to investigate the validity of our approach.
Feng LIU Helin WANG Conggai LI Yanli XU
This letter proposes a scheme for the backward transmission of the propagation-delay based three-user X channel, which is reciprocal to the forward transmission. The given scheme successfully delivers 10 expected messages in 6 time-slots by cyclic interference alignment without loss of degrees of freedom, which supports efficient bidirectional transmission between the two ends of the three-user X channel.
Qingping YU You ZHANG Zhiping SHI Xingwang LI Longye WANG Ming ZENG
In this letter, a deep neural network (DNN) aided joint source-channel (JSCC) decoding scheme is proposed for polar codes. In the proposed scheme, an integrated factor graph with an unfolded structure is first designed. Then a DNN aided flooding belief propagation decoding (FBP) algorithm is proposed based on the integrated factor, in which both source and channel scaling parameters in the BP decoding are optimized for better performance. Experimental results show that, with the proposed DNN aided FBP decoder, the polar coded JSCC scheme can have about 2-2.5 dB gain over different source statistics p with source message length NSC = 128 and 0.2-1 dB gain over different source statistics p with source message length NSC = 512 over the polar coded JSCC system with existing BP decoder.
Zhuo ZHANG Donghui LI Lei XIA Ya LI Xiankai MENG
With the growing complexity and scale of software, detecting and repairing errant behaviors at an early stage are critical to reduce the cost of software development. In the practice of fault localization, a typical process usually includes three steps: execution of input domain test cases, construction of model domain test vectors and suspiciousness evaluation. The effectiveness of model domain test vectors is significant for locating the faulty code. However, test vectors with failing labels usually account for a small portion, which inevitably degrades the effectiveness of fault localization. In this paper, we propose a data augmentation method PVaug by using fault propagation context and variational autoencoder (VAE). Our empirical results on 14 programs illustrate that PVaug has promoted the effectiveness of fault localization.
Akihiko HIRATA Keisuke AKIYAMA Shunsuke KABE Hiroshi MURATA Masato MIZUKAMI
This study investigates the improvement of the channel capacity of 5-GHz-band multiple-input multiple-output (MIMO) communication using microwave-guided modes propagating along a polyvinyl chloride (PVC) pipe wall for a buried pipe inspection robot. We design a planar Yagi-Uda antenna to reduce transmission losses in communication with PVC pipe walls as propagation paths. Coupling efficiency between the antenna and a PVC pipe is improved by attaching a PVC adapter with the same curvature as the PVC pipe's inner wall to the Yagi-Uda antenna to eliminate any gap between the antenna and the inner wall of the PVC pipe. The use of a planar Yagi-Uda antenna with a PVC adaptor decreases the transmission loss of a 5-GHz-band microwave signal propagating along a 1-m-lomg straight PVC pipe wall by 7dB compared to a dipole antenna. The channel capacity of a 2×2 MIMO system using planar Yagi-Uda antennas is more than twice that of the system using dipole antennas.
Tekkan OKUDA Hiraku OKADA Chedlia BEN NAILA Masaaki KATAYAMA
In this study, aiming at clarifying the characteristics of air-to-ground radio wave propagation in mountainous areas, a transmission experiment was performed between a drone equipped with a transmitter and three receivers set up on the ground using a 920MHz band wireless system at Uchigatani forest, which is located in Yamato-cho, Gujo-shi, Gifu Prefecture. In the experiment, we simultaneously measured the received signal strength indicator (RSSI) and the drone's latitude, longitude, and height from the ground. Then, we verified whether the measured data has the line-of-sight between the transmitter and receivers using a geographic information system and analyzed characteristics of the RSSI, packet loss rate, and fading concerning the height from the ground and distance between the transmitter and receivers. The results showed that increasing the drone's altitude to 90m or more makes the link more stable and that the fading distribution in mountainous terrains is different from in other terrains.
Takanobu DOI Jun SHIKIDA Daichi SHIRASE Kazushi MURAOKA Naoto ISHII Takumi TAKAHASHI Shinsuke IBI
This paper proposes two full-digital receive beamforming (BF) methods for low-complexity and high-accuracy uplink signal detection via Gaussian belief propagation (GaBP) at base stations (BSs) adopting massive multi-input multi-output (MIMO) for open radio access network (O-RAN). In addition, beyond fifth generation mobile communication (beyond 5G) systems will increase uplink capacity. In the scenarios such as O-RAN and beyond 5G, it is vital to reduce the cost of the BSs by limiting the bandwidth of fronthaul (FH) links, and the dimensionality reduction of the received signal based on the receive BF at a radio unit is a well-known strategy to reduce the amount of data transported via the FH links. In this paper, we clarify appropriate criteria for designing a BF weight considering the subsequent GaBP signal detection with the proposed methods: singular-value-decomposition-based BF and QR-decomposition-based BF with the aid of discrete-Fourier-transformation-based spreading. Both methods achieve the dimensionality reduction without compromising the desired signal power by taking advantage of a null space of channels. The proposed receive BF methods reduce correlations between the received signals in the BF domain, which improves the robustness of GaBP against spatial correlation among fading coefficients. Simulation results assuming realistic BS and user equipment arrangement show that the proposed methods improve detection capability while significantly reducing the computational cost.
Keita IMAIZUMI Koichi ICHIGE Tatsuya NAGAO Takahiro HAYASHI
In this paper, we propose a method for predicting radio wave propagation using a correlation graph convolutional neural network (C-Graph CNN). We examine what kind of parameters are suitable to be used as system parameters in C-Graph CNN. Performance of the proposed method is evaluated by the path loss estimation accuracy and the computational cost through simulation.
Conggai LI Feng LIU Xin ZHOU Yanli XU
To obtain a full picture of potential applications for propagation-delay based X channels, it is important to obtain all feasible schemes of cyclic interference alignment including the encoder, channel instance, and decoder. However, when the dimension goes larger, theoretical analysis about this issue will become tedious and even impossible. In this letter, we propose a computer-aided solution by searching the channel space and the scheduling space, which can find all feasible schemes in details. Examples are given for some typical X channels. Computational complexity is further analyzed.
Rong FEI Yufan GUO Junhuai LI Bo HU Lu YANG
With the widespread use of indoor positioning technology, the need for high-precision positioning services is rising; nevertheless, there are several challenges, such as the difficulty of simulating the distribution of interior location data and the enormous inaccuracy of probability computation. As a result, this paper proposes three different neural network model comparisons for indoor location based on WiFi fingerprint - indoor location algorithm based on improved back propagation neural network model, RSSI indoor location algorithm based on neural network angle change, and RSSI indoor location algorithm based on depth neural network angle change - to raise accurately predict indoor location coordinates. Changing the action range of the activation function in the standard back-propagation neural network model achieves the goal of accurately predicting location coordinates. The revised back-propagation neural network model has strong stability and enhances indoor positioning accuracy based on experimental comparisons of loss rate (loss), accuracy rate (acc), and cumulative distribution function (CDF).
Wen GU Shohei KATO Fenghui REN Guoxin SU Takayuki ITO Shinobu HASEGAWA
Influential user detection is critical in supporting the human facilitator-based facilitation in the online forum. Traditional approaches to detect influential users in the online forum focus on the statistical activity information such as the number of posts. However, statistical activity information cannot fully reflect the influence that users bring to the online forum. In this paper, we propose to detect the influencers from the influence propagation perspective and focus on the influential maximization (IM) problem which aims at choosing a set of users that maximize the influence propagation from the entire social network. An online forum influence propagation network (OFIPN) is proposed to model the influence from an individual user perspective and influence propagation between users, and a heuristic algorithm that is proposed to find influential users in OFIPN. Experiments are conducted by simulations with a real-world social network. Our empirical results show the effectiveness of the proposed algorithm.
Kazuma TOMIMOTO Ryo YAMAGUCHI Takeshi FUKUSAKO
The 5th-generation mobile communication uses multi-element array antennas in not only base stations but also mobile terminals. In order to design multi-element array antennas efficiently, it is important to acquire the characteristics of the direction of arrival (DOA) and direction of departure (DOD), and a highly accurate and simple measurement method is required. This paper proposes a highly accurate and simple method to measure DOA and DOD by applying synthetic aperture (SA) processed at both Rx and Tx sides. It is also shown that the addition of beam scanning to the proposed method can reduce the measurement time while maintaining the peak detection resolution. Moreover, experiments in an anechoic chamber and a shielded room using actual wave sources confirm that DOA and DOD can be detected with high accuracy.
Conggai LI Qian GAN Feng LIU Yanli XU
Compared with the unicast scenario, X channels with multicast messaging can support richer transmission scenarios. The transmission efficiency of the wireless multicast X channel is an important and open problem. This article studies the degrees of freedom of a propagation-delay based multicast X channel with two transmitters and arbitrary receivers, where each transmitter sends K different messages and each receiver desires K - 1 of them from each transmitter. The cyclic polynomial approach is adopted for modeling and analysis. The DoF upper bound is analyzed and shown to be unreachable. Then a suboptimal scheme with one extra time-slot cycle is proposed, which uses the cyclic interference alignment method and achieves a DoF of K - 1. Finally, the feasibility conditions in the Euclidean space are derived and the potential applications are demonstrated for underwater acoustic and terrestrial radio communications.
Takashi YASUI Jun-ichiro SUGISAKA Koichi HIRAYAMA
In this study, the bending losses of chalcogenide glass channel optical waveguides consisting of an As2Se3 core and an As2S3 lower cladding layer were numerically evaluated across the astronomical N-band, which is the mid-infrared spectral range between the 8 µm and 12 µm wavelengths. The results reveal the design rules for bent waveguides in mid-infrared astrophotonic devices.
Naotake YAMAMOTO Taichi SASAKI Atsushi YAMAMOTO Tetsuya HISHIKAWA Kentaro SAITO Jun-ichi TAKADA Toshiyuki MAEYAMA
A path loss prediction formula for IoT (Internet of Things) wireless communication close to ceiling beams in the 920MHz band is presented. In first step of our investigation, we conduct simulations using the FDTD (Finite Difference Time Domain) method and propagation tests close to a beam on the ceiling of a concrete building. In the second step, we derive a path loss prediction formula from the simulation results by using the FDTD method, by dividing into three regions of LoS (line-of-sight) situation, situation in the vicinity of the beam, and NLoS (non-line-of-sight) situation, depending on the positional relationship between the beam and transmitter (Tx) and receiver (Rx) antennas. For each condition, the prediction formula is expressed by a relatively simple form as a function of height of the antennas with respect to the beam bottom. Thus, the prediction formula is very useful for the wireless site planning for the IoT wireless devices set close to concrete beam ceiling.
This paper shows structural optimal design of optical waveguide components utilizing an efficient 3D frequency-domain and 2D time-domain beam propagation method (BPM) with an alternating direction implicit (ADI) scheme. Usual optimal design procedure is based on iteration of numerical simulation, and total computational cost of the optimal design mainly depends on the efficiency of numerical analysis method. Since the system matrices are tridiagonal in the ADI-based BPM, efficient analysis and optimal design are available. Shape and topology optimal design shown in this paper is based on optimization of density distribution and sensitivity analysis to the density parameters. Computational methods of the sensitivity are shown in the case of using the 3D semi-vectorial and 2D time-domain BPM based on ADI scheme. The validity of this design approach is shown by design of optical waveguide components: mode converters, and a polarization beam splitter.
Hideki OMOTE Akihiro SATO Sho KIMURA Shoma TANAKA HoYu LIN
High-Altitude Platform Station (HAPS) provides communication services from an altitude of 20km via a stratospheric platform such as a balloon, solar-powered airship, or other aircraft, and is attracting much attention as a new mobile communication platform for ultra-wide coverage areas and disaster-resilient networks. HAPS can provide mobile communication services directly to the existing smartphones commonly used in terrestrial mobile communication networks such as Fourth Generation Long Term Evolution (4G LTE), and in the near future, Fifth Generation New Radio (5G NR). In order to design efficient HAPS-based cell configurations, we need a radio wave propagation model that takes into consideration factors such as terrain, vegetation, urban areas, suburban areas, and building entry loss. In this paper, we propose a new vegetation loss model for Recommendation ITU-R P.833-9 that can take transmission frequency and seasonal characteristics into consideration. It is based on measurements and analyses of the vegetation loss of deciduous trees in different seasons in Japan. Also, we carried out actual stratospheric measurements in the 700MHz band in Kenya to extend the lower frequency limit. Because the measured results show good agreement with the results predicted by the new vegetation loss model, the model is sufficiently valid in various areas including actual HAPS usage.
Hideki OMOTE Akihiro SATO Sho KIMURA Shoma TANAKA HoYu LIN Takashi HIKAGE
In recent years, High-Altitude Platform Station (HAPS) has become the most interesting topic for next generation mobile communication systems, because platforms such as Unmanned Aerial Vehicles (UAVs), balloons, airships can provide ultra-wide coverage, up to 200km in diameter, from altitudes of around 20 km. It also offers resiliency to damage caused by disasters and so ensures the stability and reliability of mobile communications. In order to further integrate HAPS with existing terrestrial mobile communication networks in providing mobile services to users, radio wave propagation models such as terrain, vegetation loss, human shielding loss, building entry loss, urban/suburban areas must be taken into consideration when designing HAPS-based cell configurations. This paper proposes a human body shielding propagation loss model that considers the basic signal attenuation by the human body at high elevation angles. It also analyzes the effect of changes in actual urban/suburban environments due to the arrival of multipath radio waves for HAPS communications in the frequency range of 0.7 to 3.3GHz. Measurements in actual urban/rural environments in Japan and actual stratospheric base station measurements in Kenya are carried out to confirm the validity of the proposed model. Since the measured results agree well with the results predicted by the proposed model, the model is good enough to provide estimates of human loss in various environments.
This paper presents a novel blind signal separation method for the measurement of pulse waves at multiple body positions using an array radar system. The proposed method is based on a mathematical model of pulse wave propagation. The model relies on three factors: (1) a small displacement approximation, (2) beam pattern orthogonality, and (3) an impulse response model of pulse waves. The separation of radar echoes is formulated as an optimization problem, and the associated objective function is established using the mathematical model. We evaluate the performance of the proposed method using measured radar data from participants lying in a prone position. The accuracy of the proposed method, in terms of estimating the body displacements, is measured using reference data taken from laser displacement sensors. The average estimation errors are found to be 10-21% smaller than those of conventional methods. These results indicate the effectiveness of the proposed method for achieving noncontact measurements of the displacements of multiple body positions.