The search functionality is under construction.

Keyword Search Result

[Keyword] resonant frequency(14hit)

1-14hit
  • An Approach to Identify Circulating Tumor Cell Using Ring Resonator Type of Electrode Using Oscillation Technique at Centimeter Frequency Bands Open Access

    Futoshi KUROKI  Shouta SORA  Kousei KUMAHARA  

     
    INVITED PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/04/09
      Vol:
    E103-C No:10
      Page(s):
    411-416

    A ring-resonator type of electrode (RRTE) has been proposed to detect the circulating tumor cell (CTC) for evaluation of the current cancer progression and malignancy in clinical applications. Main emphasis is placed on the identification sensitivity for the lossy materials that can be found in biomedical fields. At first, the possibility of the CTC detection was numerically considered to calculate the resonant frequency of the RRTE catching the CTC, and it was evident that the RRTE with the cell has the resonant frequency inherent in the cell featured by its complex permittivity. To confirm the numerical consideration, the BaTiO3 particle, whose size was similar to that of the CTC, was inserted in the RRTE instead of the CTC as a preliminary experiment. Next, the resonant frequencies of the RRTE with internal organs of the beef cattle such as liver, lung, and kidney were measured for evaluation of the lossy materials such as the CTC, and degraded Q curves were observed because the Q-factors inherent in the internal organs were usually low due to the poor loss tangents. To overcome such difficulty, the RRTE, the oscillator circuit consisting of the FET being added, was proposed to improve the identification sensitivity. Comparing the identification sensitivity of the conventional RRTE, it has been improved because the oscillation frequency spectrum inherent in an internal organ could be easily observed thanks to the oscillation condition with negative resistance. Thus, the validity of the proposed technique has been confirmed.

  • Simulation and Measurement of Properties of Metallic Photonic Crystal Point-Defect-Cavities with a Centrally-Loaded Rod

    Chun-Ping CHEN  Chenglong XIE  Tetsuo ANADA  Zejun ZHANG  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:1
      Page(s):
    91-95

    Properties of a class of M-PhC (metallic-photonic-crystal) point-defect-cavities (PDCs) with a centrally-loaded rod are theoretically and experimentally investigated. After the computation of the resonant frequencies and Q-factors of the resonant modes, the PDCs are fabricated and experimentally measured to validate the simulation results.

  • A Theoretical Analysis of a Circular Microstrip Antenna in a Parallel-Plate Waveguide

    Narihiro NAKAMOTO  Tomohiro OKA  Shoichi KITAZAWA  Hiroshi BAN  Kiyoshi KOBAYASHI  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:1
      Page(s):
    173-181

    To better understand antenna properties in a narrow space such as in a densely-packed device, a circular microstrip antenna in a narrow parallel-plate waveguide is theoretically studied. An analytical expression is derived for the input impedance in a parallel-plate waveguide by using the cavity model with surface admittance on the side wall. The surface admittance is defined by the external magnetic field due to the equivalent magnetic current at the aperture and takes into account the contribution of the parallel plates to the antenna. The magnetic field external to the antenna, that is in the parallel-plate region, is determined by using a dyadic Green's function. The input impedance is then calculated by a basic definition based on the conservation of the complex power. An analytical expression which couples the resonant frequency and the surface susceptance is also formulated. Presented expressions are validated by comparison with experimental results.

  • Principles of Time Domain Calculus of Microwave Resonator Parameters

    Ikuo AWAI  Yangjun ZHANG  Tetsuya ISHIDA  Tsuyoshi SUZUKI  

     
    PAPER

      Vol:
    E90-C No:12
      Page(s):
    2198-2204

    A new unified method is proposed to calculate the basic resonator parameters, i.e., the resonant frequency, external Q, unloaded Q and coupling coefficient in the time domain. By exciting the resonator from a weakly coupled external circuit, one can inject only a narrow resonant spectrum from the broad spectrum of the excitation pulse. The resonant frequency is easily counted by the number of zero crossings of the internal field intensity, whereas the Q's are calculated by the decay rate of the field amplitude. The coupling coefficient computed by the energy exchange rate between two resonators completes the new time domain algorithm.

  • New Expressions for Coupling Coefficient between Resonators

    Ikuo AWAI  

     
    PAPER-Devices

      Vol:
    E88-C No:12
      Page(s):
    2295-2301

    Coupling between resonators are analyzed theoretically on basis of the coupled mode theory. New and basic equations for the coupling coefficient are derived and compared with those of waveguides. They should be useful for understanding the physical background of coupling and designing a new coupling scheme.

  • Improvement of Unloaded Q of Dielectric Image Resonator

    Kazuki IWASHITA  Ikuo AWAI  Hiroshi KUBO  Atsushi SANADA  

     
    PAPER

      Vol:
    E88-C No:1
      Page(s):
    34-39

    Unloaded Q of a dielectric image resonator is discussed based on the electromagnetic field distribution. It is shown that a partial air gap and a dielectric sheet with low permittivity between the dielectric resonator and the shield case reduce both the dielectric loss and the conductor loss. Especially, reduction of the conductor loss is significant, since the magnetic field distribution moves from the conductor to the upper part of resonator. A half-cut image resonator with an air gap and dielectric spacer is simulated and measured. The unloaded Q of the dielectric resonator with low dielectric loss is improved by about two times from that of original image resonator.

  • Analysis of Resonant Frequency of Fast Scanning Micromirror with Vertical Combdrives

    Hiroyuki WADA  Daesung LEE  Stefan ZAPPE  Olav SOLGAARD  

     
    LETTER-Electromechanical Devices and Components

      Vol:
    E87-C No:11
      Page(s):
    2006-2008

    The relation between resonant frequency of micromirror with vertical combdrives and applied voltage between the upper and lower comb teeth was analyzed. Resonant frequency of the micromirror was controlled by stiffness of the torsion hinge. Resonant frequency of the mirror was proportional to the applied voltage between the upper and lower comb teeth at the same tilt angle.

  • A Resonant Frequency Formula of Bow-Tie Microstrip Antenna and Its Application for the Design of the Antenna Using Genetic Algorithm

    Wen-Jun CHEN  Bin-Hong LI  Tao XIE  

     
    LETTER-Antennas and Propagation

      Vol:
    E87-B No:9
      Page(s):
    2808-2810

    An empirical formula of resonant frequency of bow-tie microstrip antennas is presented, which is based on the cavity model of microstrip patch antennas. A procedure to design a bow-tie antenna using genetic algorithm (GA) in which we take the formula as a fitness function is also given. An optimized bow-tie antenna by genetic algorithm was constructed and measured. Numerical and experimental results are used to validate the formula and GA. The results are in good agreement.

  • Fully Embedded Low Temperature Co-fired Ceramics (LTCC) Spiral Inductors for L-Band RF System-in-Package (SIP) Applications

    Ki Chan EUN  Young Chul LEE  Byung Gun CHOI  Dae Jun KIM  Chul Soon PARK  

     
    LETTER

      Vol:
    E86-C No:6
      Page(s):
    1089-1092

    Fully embedded spiral inductors in a low loss dielectric multi-layer were designed and fabricated using a low temperature co-fired ceramics (LTCC) technology for RF SIP (system in package) integrations. The line width/space and the number of spiral layers were optimized within five layers of LTCC dielectric for high Q-factor, high self-resonant frequency (SRF), process easiness, and compact size. The embedded multi-layer spiral inductors reveal better performance in terms of Q-factor, SRF and the effective inductance Leff than planar spiral inductors of the same dimension and number of turns. The optimized multi-layer spiral inductor shows maximum Q of 56, Leff of 6.6 nH at Qmax and SRF of 3.6 GHz while planar spiral inductors have maximum Q of 49, Leff of 5.8 nH at Qmax and SRF of 3.0 GHz.

  • Resonant Frequency of Rectangular Microstrip Antennas on the Anisotropy Substrate with an Air Gap and Superstrate

    Joong Han YOON  Kyung Sup KWAK  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E86-C No:2
      Page(s):
    244-249

    This study investigates the anisotropy substrate and dielectric cover effects of the rectangular microstrip patch antenna on anisotropy substrates with air gap, based on rigorous full-wave analysis and Galerkin's moment method. Results show that the resonant frequencies in the variation of air gap, patch length, and permittivity of superstrate can be determined and analyzed with varying dielectric cover thickness.

  • Perturbational Analysis of Microstrip Antennas with Meshed Ground Planes

    Toru TAKAHASHI  Isamu CHIBA  

     
    PAPER-Antenna and Propagation

      Vol:
    E85-B No:9
      Page(s):
    1787-1796

    Microstrip antennas with meshed ground planes are suitable for radiation elements of large satellite phased array antennas. Although they have some mechanical advantages such as the possibility of antenna weight reduction, they also cause electrical problems such as the resonant frequency shift and F/B ratio degradation. The first purpose of this paper is the analytical understanding of the resonant frequency shift, for which two perturbational methods are proposed. One has a closed form expression that provides some useful design data. The other is to solve the integral equations by using the periodicity of the meshed ground plane, which gives more accurate results. The second purpose of this paper is to investigate the backward radiation from the meshed ground plane analytically, for which we derive an analysis method from the calculated results of the resonant frequency shift. The proposed methods are verified with the measured ones.

  • Analytical Investigation of Resonant Frequency of a Microstrip Antenna with Meshed Ground Plane

    Toru TAKAHASHI  Isamu CHIBA  

     
    LETTER

      Vol:
    E83-C No:5
      Page(s):
    755-758

    In this letter, we propose an approximate calculation formula for the resonant frequency of a microstrip antenna with meshed ground plane, which is derived by perturbational technique and is expressed by a simple closed form. The calculated results are in good agreement with FDTD-calculated and measured ones. Therefore, it is confirmed that the proposed formula is valid for approximate evaluation of the resonant frequency of microstrip antenna with meshed ground plane.

  • Measurement of Viscosity of Liquid Using Piezoceramic Disk Transducer with a Radial Expansion Mode

    Kazuhiko IMANO  Ryosuke SHIMAZAKI  Shin'ichi MOMOZAWA  

     
    LETTER-Ultrasonics

      Vol:
    E83-A No:1
      Page(s):
    162-163

    Measurement of the viscosity of liquid using a piezoelectric disk is described. Experiments with a radial expansion mode of a piezoceramic disk were carried out for water-glycerin mixture samples. Resonant resistance has linearity to the square root of the product of density and viscosity of a liquid around 113 kHz.

  • Ultrasonic Motor Operating in Longitudinal-Torsional Degenerate-Mode

    Takeshi INOUE  Osamu MYOHGA  Noriko WATARI  Takeya HASHIGUCHI  Sadayuki UEHA  

     
    PAPER-Acoustics

      Vol:
    E80-A No:12
      Page(s):
    2540-2547

    The efficiency and reliability of an ultrasonic motor, operating in longitudinal-torsional degenerate-mode, are investigated. It is essential to miniaturize both longitudinal and torsional mode piezoelectric ceramic elements, in order to produce low-cost ultrasonic motors, and to realize a motor with low battery power consumption. The ultrasonic motor is designed with an accurate mechanical equivalent circuit, which can produce high design precision notwithstanding low computation cost. It is important in this design that the resonant frequencies of longitudinal mode and torsional mode coincide with each other under the pertinent rotor pressing force and longitudinal and torsional mode piezoelectric ceramic elements are located in the vibration nodes for the longitudinal mode and the torsional mode, respectively. As a result, the fabricated motor, whose rotor diameter was 12 mm, produced 480 r.p.m. no-load revolution speed, 0.55 kgfcm maximum torque, 50% maximum efficiency, 2.5 W consumed power and a lifetime over 1000 hours with continuous rotation.