The search functionality is under construction.

Keyword Search Result

[Keyword] self-heat(8hit)

1-8hit
  • Prediction of Self-Heating in Short Intra-Block Wires

    Ken-ichi SHINKAI  Masanori HASHIMOTO  Takao ONOYE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:3
      Page(s):
    583-594

    This paper investigates whether the self-heating effect in short intra-block wires will become apparent with technology scaling. These wires seem to have good thermal radiation characteristics, but we validate that the self-heating effect in local signal wires will be greater than that in optimal repeater-inserted global wires. Our numerical experiment shows that the maximum temperature increase from the silicon junction temperature will reach 40.4 in a steady state at a 14-nm process. Our attribution analysis also demonstrates that miniaturizing the area of wire cross-section exacerbates self-heating as well as using low-κ material and increased power dissipation in advanced technologies below 28 nm. It is revealed that the impact of self-heating on performance in local wires is limited, while underestimating the temperature may cause an unexpected reliability failure.

  • Impact of Self-Heating in Wire Interconnection on Timing

    Toshiki KANAMOTO  Takaaki OKUMURA  Katsuhiro FURUKAWA  Hiroshi TAKAFUJI  Atsushi KUROKAWA  Koutaro HACHIYA  Tsuyoshi SAKATA  Masakazu TANAKA  Hidenari NAKASHIMA  Hiroo MASUDA  Takashi SATO  Masanori HASHIMOTO  

     
    BRIEF PAPER

      Vol:
    E93-C No:3
      Page(s):
    388-392

    This paper evaluates impact of self-heating in wire interconnection on signal propagation delay in an upcoming 32 nm process technology, using practical physical parameters. This paper examines a 64-bit data transmission model as one of the most heating cases. Experimental results show that the maximum wire temperature increase due to the self-heating appears in the case where the ratio of interconnect delay becomes largest compared to the driver delay. However, even in the most significant case which induces the maximum temperature rise of 11.0, the corresponding increase in the wire resistance is 1.99% and the resulting delay increase is only 1.15%, as for the assumed 32 nm process. A part of the impact reduction of wire self-heating on timing comes from the size-effect of nano-scale wires.

  • Study of Self-Heating Phenomena in Si Nano Wire MOS Transistor

    Tetsuo ENDOH  Yuto NORIFUSA  

     
    PAPER

      Vol:
    E92-C No:5
      Page(s):
    598-602

    In this study, I have numerically investigated the temperature distribution of n-type Si Nano Wire MOS Transistor induced by the self-heating effect by using a 3-D device simulator. The dependencies of temperature distribution within the Si Nano Wire MOS Transistor on both its gate length and width of the Si nano wire were analyzed. First, it is shown that the peak temperature in Si Nano Wire MOS Transistor increases by 100 K with scaling the gate length from 54 nm to 14 nm in the case of a 50 nm width Si nano wire. Next, it is found that the increase of its peak temperature due to scaling the gate length can be suppressed by scaling the size of the Si nano wire, for the first time. The peak temperature suppresses by 160 K with scaling the Si nano wire width from 50 nm to 10 nm in the case of a gate length of 14 nm. Furthermore, the heat dissipation in the gate, drain, and source direction are analyzed, and the analytical theory of the suppression of the temperature inside Si Nano Wire MOSFET is proposed. This study shows very useful results for future Si Nano Wire MOS Transistor design for suppressing the self-heating effect.

  • An Asynchronous Circuit Design Technique for a Flexible 8-Bit Microprocessor

    Nobuo KARAKI  Takashi NANMOTO  Satoshi INOUE  

     
    PAPER

      Vol:
    E91-C No:5
      Page(s):
    721-730

    This paper presents an asynchronous design technique, an enabler for the emerging technology of flexible microelectronics that feature low-temperature processed polysilicon (LTPS) thin-film transistors (TFT) and surface-free technology by laser annealing/ablation (SUFTLA®). The first design instance chosen is an 8-bit microprocessor. LTPS TFTs are good for realizing displays having integrated VLSI circuit at lower costs. However, LTPS TFTs have drawbacks, including substantial deviations in characteristics and the self-heating phenomenon. To solve these problems, the authors adopted the asynchronous circuit design technique and developed an asynchronous design language called Verilog+, which is based on a subset of Verilog HDL® and includes minimal primitives used for describing the communications between modules, and the dedicated tools including a translator called xlator and a synthesizer called ctrlsyn. The flexible 8-bit microprocessor stably operates at 500 kHz, drawing 180 µA from a 5 V power source. The microprocessor's electromagnetic emissions are 21 dB less than those of the synchronous counterpart.

  • High-Frequency Characteristics of SiGe Heterojunction Bipolar Transistors under Pulsed-Mode Operation

    Kun-Ming CHEN  Guo-Wei HUANG  Li-Hsin CHANG  Hua-Chou TSENG  Tsun-Lai HSU  

     
    PAPER-Active Devices and Circuits

      Vol:
    E87-C No:5
      Page(s):
    720-725

    High-frequency characteristics of SiGe heterojunction bipolar transistors with different emitter sizes are studied based on pulsed measurements. Because the self-heating effect in transistors will enhance the Kirk effect, as the devices operate in high current region, the measured cutoff frequency and maximum oscillation frequency decrease with measurement time in the pulsed duration. By analyzing the equivalent small-signal device parameters, we know the reduction of cutoff frequency and maximum oscillation frequency is attributed to the reduction of transconductance and the increase of junction capacitances for fixed base-emitter voltage, while it is only attributed to the degradation of transconductance for fixed collector current. Besides, the degradation of high-frequency performance due to self-heating effect would be improved with the layout design combining narrow emitter finger and parallel-interconnected subcells structure.

  • Dispersion Mechanisms in AlGaN/GaN HFETs

    Sebastien NUTTINCK  Edward GEBARA  Stephane PINEL  Joy LASKAR  

     
    PAPER

      Vol:
    E86-C No:8
      Page(s):
    1400-1408

    We report the investigation of major dispersion mechanisms such as self-heating, trapping, current collapse, and floating-body effects present in AlGaN/GaN HFETs. These effects are analyzed using DC/Pulsed IV, load-pull, low-frequency noise systems, and a cryogenic probe station. This study leads to a better understanding of the device physics, which is critical for accurate large-signal modeling and device optimization.

  • Non-isothermal Device Simulation Taking Account of Transistor Self-Heating and In-Chip Thermal Interdependence

    Hirobumi KAWASHIMA  Ryo DANG  

     
    PAPER

      Vol:
    E80-A No:10
      Page(s):
    1973-1978

    A non-isothermal device simulation, consisting of solving heat flow equation three-dimensionally together with other semiconductor equations two-dimensionally, is reported for various arrangements of a pluralty of transistors mounted on a single chip. These arrangements are intended to simulate the real situation in an IC chip whereas a three-dimensional solution of the heat flow equation is aimed at accurately determining the thermal interdependence among individual transistors. As a result, the drain current versus drain voltage characteristics of a miniaturized transistor is found to exhibit a heat-induced negative resistance region.

  • Analysis of Self-Heating in SOI High Voltage MOS Transistor

    Hitoshi YAMAGUCHI  Hiroaki HIMI  Shigeyuki AKITA  Toshiyuki MORISHITA  

     
    PAPER

      Vol:
    E80-C No:3
      Page(s):
    423-430

    This paper describes an analytic method, experimental results and simulation results for self-heating in a SOI (Silicon On Insulator) high voltage MOS transistor. The new analytic method enabled the temperature-rise caused by self-heating to be measured precisely. The temperature-rise in an operating transistor was evaluated by measuring the change of the source current against the source current without the self-heating. In advance, the relation between the temperature-rise and the current change had been prepared by measuring the current decrease when the hot-chuck temperature had been changed in iso-thermal condition. By using this method, the dependence of the temperature-rise or the current decrease on the operating condition or the thermal resistance were clarified. Furthermore, these measurement results and the thermal resistance which is calculated by a FEM analysis enabled a fully coupled electrothermal device simulation to be analyzed more precisely. The dependence of the current decrease on the buried oxide thickness were also calculated.