The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] specific absorption rate(20hit)

1-20hit
  • Specific Absorption Rate (SAR) Calculations in the Abdomen of the Human Body Caused by Smartphone at Various Tilt Angles: A Consideration of the 1950MHz Band

    Chiaki TAKASAKA  Kazuyuki SAITO  Masaharu TAKAHASHI  Tomoaki NAGAOKA  Kanako WAKE  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2021/09/01
      Vol:
    E105-B No:3
      Page(s):
    295-301

    Various electromagnetic (EM) wave applications have become commonplace, and humans are frequently exposed to EM waves. Therefore, the effect of EM waves on the human body should be evaluated. In this study, we focused on the specific absorption rate (SAR) due to the EM waves emitted from smartphones, developed high-resolution numerical smartphone models, and studied the SAR variation by changing the position and tilt angle (the angle between the display of the smartphone model and horizontal plane) of the smartphone models vis-à-vis the human abdomen, assuming the use of the smartphone at various tilt angles in front of the abdomen. The calculations showed that the surface shape of the human model influenced the SAR variation.

  • Dosimetry and Verification for 6-GHz Whole-Body Non-Constraint Exposure of Rats Using Reverberation Chamber

    Jingjing SHI  Jerdvisanop CHAKAROTHAI  Jianqing WANG  Kanako WAKE  Soichi WATANABE  Osamu FUJIWARA  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1164-1172

    With the rapid increase of various uses of wireless communications in modern life, the high microwave and millimeter wave frequency bands are attracting much attention. However, the existing databases on above 6GHz radio-frequency (RF) electromagnetic (EM) field exposure of biological bodies are obviously insufficient. An in-vivo research project on local and whole-body exposure of rats to RF-EM fields above 6GHz was started in Japan in 2013. This study aims to perform a dosimetric design for the whole-body-average specific absorption rates (WBA-SARs) of unconstrained rats exposed to 6GHz RF-EM fields in a reverberation chamber (RC). The required input power into the RC is clarified using a two-step evaluation method in order to achieve a target exposure level in rats. The two-step method, which incorporates the finite-difference time-domain (FDTD) numerical solutions with electric field measurements in an RC exposure system, is used as an evaluation method to determine the whole-body exposure level in the rats. In order to verify the validity of the two-step method, we use S-parameter measurements inside the RC to experimentally derive the WBA-SARs with rat-equivalent phantoms and then compare those with the FDTD-calculated ones. It was shown that the difference between the two-step method and the S-parameter measurements is within 1.63dB, which reveals the validity and usefulness of the two-step technique.

  • Variability of Specific Absorption Rate of Human Body for Various Configurations of Tablet Computer in Vicinity of Abdomen

    Akihiro TATENO  Tomoaki NAGAOKA  Kazuyuki SAITO  Soichi WATANABE  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1173-1181

    With the development and diverse use of wireless radio terminals, it is necessary to estimate the specific absorption rate (SAR) of the human body from such devices under various exposure situations. In particular, tablet computers may be used for a long time while placed near the abdomen. There has been insufficient evaluation of the SAR for the human body from tablet computers. Therefore, we investigated the SAR of various configurations of a commercial tablet computer using a numerical model with the anatomical structures of Japanese males and females, respectively. We find that the 10-g-averaged SAR of the tablet computer is strongly altered by the tablet's orientation, i.e., from -7.3dB to -22.6dB. When the tablet computer is moved parallel to the height direction, the relative standard deviations of the 10-g averaged SAR for the male and female models are within 40%. In addition, those for the different tilts of the computer are within 20%. The fluctuations of the 10-g-averaged SAR for the seated human models are within ±1.5dB in all cases.

  • Specific Absorption Rates and Temperature Elevations due to Wireless Radio Terminals in Proximity to a Fetus at Gestational Ages of 13, 18, and 26 Weeks

    Akihiro TATENO  Shimpei AKIMOTO  Tomoaki NAGAOKA  Kazuyuki SAITO  Soichi WATANABE  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E97-B No:10
      Page(s):
    2175-2183

    As the electromagnetic (EM) environment is becoming increasingly diverse, it is essential to estimate specific absorption rates (SARs) and temperature elevations of pregnant females and their fetuses under various exposure situations. This study presents calculated SARs and temperature elevations in a fetus exposed to EM waves. The calculations involved numerical models for the anatomical structures of a pregnant Japanese woman at gestational stages of 13, 18, and 26 weeks; the EM source was a wireless portable terminal placed close to the abdomen of the pregnant female model. The results indicate that fetal SARs and temperature elevations are closely related to the position of the fetus relative to the EM source. We also found that, although the fetal SAR caused by a half-wavelength dipole antenna is sometimes comparable to or slightly more than the International Commission Non-Ionizing Radiation Protection guidelines, it is lower than the guideline level in more realistic situations, such as when a planar inverted-F antenna is used. Furthermore, temperature elevations were significantly below the threshold set to prevent the child from being born with developmental disabilities.

  • Quantification and Verification of Whole-Body-Average SARs in Small Animals Exposed to Electromagnetic Fields inside Reverberation Chamber

    Jingjing SHI  Jerdvisanop CHAKAROTHAI  Jianqing WANG  Kanako WAKE  Soichi WATANABE  Osamu FUJIWARA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E97-B No:10
      Page(s):
    2184-2191

    This paper aims to achieve a high-quality exposure level quantification of whole-body average-specific absorption rates (WBA-SARs) for small animals in a medium-size reverberation chamber (RC). A two-step method, which incorporates the finite-difference time-domain (FDTD) numerical solutions with electric field measurements in an RC-type exposure system, has been used as an evaluation method to determine the whole-body exposure level in small animals. However, there is little data that quantitatively demonstrate the validity and accuracy of this method in an RC up to now. In order to clarify the validity of the two-step method, we compare the physical quantities in terms of electric field strength and WBA-SARs by using a direct numerical assessment method known as the method of moments (MoM) with ten homogenous gel phantoms placed in an RC with 2GHz exposure. The comparison results show that the relative errors between the two-step method and the MoM approach are approximately below 10%, which reveals the validity and usefulness of the two-step technique. Finally, we perform a dosimetric analysis of the WBA-SARs for anatomical mouse models with the two-step method and determine the input power related to our developed RC-exposure system to achieve a target exposure level in small animals.

  • A Novel SAR-Probe Calibration Method Using a Waveguide Aperture in Tissue-Equivalent Liquid Open Access

    Nozomu ISHII  Lira HAMADA  Soichi WATANABE  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2035-2041

    A novel method for calibrating the probes used in standard measurement systems to evaluate SAR (specific absorption rate) of the radio equipment operating at frequencies over 3GHz is proposed. As for the proposed method, the electric-field distribution produced by a waveguide aperture installed in a liquid container is used to calibrate the SAR probe. The field distribution is shown to be the same as that given by a conventional calibration method by analytically deriving a closed-form expression for the field produced by the waveguide aperture with the help of the paraxial approximation. Comparing the approximated and measured distributions reveals that the closed-form expression is valid for the electric-field distribution near the central axis of the aperture. The calibration factor for a commercial SAR probe is evaluated by the proposed method and agrees well with that provided by the manufacturer of the probe.

  • SAR-Probe Calibration System Using Reference Dipole Antenna in Tissue-Equivalent Liquid

    Nozomu ISHII  Yukihiro MIYOTA  Ken-ichi SATO  Lira HAMADA  Soichi WATANABE  

     
    PAPER-Antenna Measurement

      Vol:
    E95-B No:1
      Page(s):
    60-68

    The probe used in the conventional SAR measurement is usually calibrated in a well filled with tissue-equivalent liquid surrounded by a rectangular waveguide and a matching dielectric window in the frequency range from 800 MHz to 3 GHz. However, below 800 MHz, the waveguides are too large to be used for the calibration. Therefore, we have developed another technique of calibrating the SAR-probe, that is, relating the output voltage of the probe to the field intensity produced by a reference antenna in the tissue-equivalent liquid by using two-antenna method. In this paper, the calibration system using the reference dipole antennas in the liquid at 450 MHz, 900 MHz and 2450 MHz is presented and far-field gain of the reference antenna and calibration factor of the SAR-probe are measured and compared with those obtained by using the conventional waveguide system.

  • Variations in SAR of Wireless Communication Devices Caused by Host Devices

    Takahiro IYAMA  Teruo ONISHI  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E94-B No:12
      Page(s):
    3603-3606

    The specific absorption rate (SAR) measurement procedure for wireless communication devices used in close proximity to the human body other than the ear was standardized by the International Electrotechnical Commission (IEC). This procedure is applicable to SAR measurement of data communication terminals that are used with host devices. Laptop PCs are assumed as host devices in this study. First, numerical modeling of laptop PCs and the validity of computations are verified with corresponding measurements. Next, mass averaged SARs are calculated dependent on the dimensions of the laptop PCs and the position of the terminals. The results show that the ratio of the maximum to minimum SARs is at most 2.0 for USB dongle and card-type terminals at 1950 MHz and 835 MHz.

  • Maximum Average SAR Measurement Procedure for Multi-Antenna Transmitters

    Takahiro IYAMA  Teruo ONISHI  

     
    PAPER-Biological Effects and Safety

      Vol:
    E93-B No:7
      Page(s):
    1821-1825

    This paper proposes and verifies a specific absorption rate (SAR) measurement procedure for multi-antenna transmitters that requires measurement of two-dimensional electric field distributions for the number of antennas and calculation in order to obtain the three-dimensional SAR distributions for arbitrary weighting coefficients of the antennas prior to determining the average SAR. The proposed procedure is verified based on Finite-Difference Time-Domain (FDTD) calculation and measurement using electro-optic (EO) probes. For two reference dipoles, the differences in the 10 g SAR obtained based on the proposed procedure compared numerically and experimentally to that based on the original calculated three-dimensional SAR distribution are at most 4.8% and 3.6%, respectively, at 1950 MHz. At 3500 MHz, this difference is at most 5.2% in the numerical verification.

  • Applicability of Three-Axis Electro-Optic (EO) Probe for Specific Absorption Rate (SAR) Measurement

    Takahiro IYAMA  Katsuki KIMINAMI  Teruo ONISHI  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E92-B No:4
      Page(s):
    1414-1417

    A prototype of a three-axis electro-optic (EO) probe is developed that has the linearity of approximately 0.5 dB in the specific absorption rate (SAR) range of 0.01 to 100 W/kg and the directivities are eight-shaped with cross-axis sensitivity isolation of greater than 30 dB. It is confirmed that electric fields and SAR distributions can be measured using a three-axis EO probe.

  • SA and SAR Analysis for Wearable UWB Body Area Applications

    Qiong WANG  Jianqing WANG  

     
    PAPER

      Vol:
    E92-B No:2
      Page(s):
    425-430

    With the rapid progress of electronic and information technology, an expectation for the realization of body area network (BAN) by means of ultra wide band (UWB) techniques has risen. Although the signal from a single UWB device is very low, the energy absorption may increase significantly when many UWB devices are simultaneously adorned to a human body. An analysis method is therefore required from the point of view of biological safety evaluation. In this study, two approaches, one is in the time domain and the other is in the frequency domain, are proposed for the specific energy absorption (SA) and the specific absorption rate (SAR) calculation. It is shown that the two approaches have the same accuracy but the time-domain approach is more straightforward in the numerical analysis. By using the time-domain approach, SA and SAR calculation results are given for multiple UWB pulse exposure to an anatomical human body model under the Federal Communications Commission (FCC) UWB limit.

  • Simulation of SAR in the Human Body to Determine Effects of RF Heating

    Tetsuyuki MICHIYAMA  Yoshio NIKAWA  

     
    LETTER

      Vol:
    E92-B No:2
      Page(s):
    440-444

    The body area network (BAN) has attracted attention because of its potential for high-grade wireless communication technology and its safety and high durability. Also, human area transmission of a BAN propagating at an ultra-wide band (UWB) has been demonstrated recently. When considering the efficiency of electromagnetic (EM) propagation inside the human body for BAN and hyperthermia treatment using RF, it is important to determine the mechanism of EM dissipation in the human body. A body heating system for hyperthermia must deposit EM energy deep inside the body. Also, it is important that the EM field generated by the implant system is sufficiently strong. In this study, the specific absorption rate (SAR) distribution is simulated using an EM simulator to consider the biological transmission mechanism and its effects. To utilize the EM field distribution using an implant system for hyperthermia treatment, the SAR distribution inside the human body is simulated. As a result, the SAR distribution is concentrated on the surface of human tissue, the muscle-bolus interface, the pancreas, the stomach, the spleen and the regions around bones. It can also be concentrated in bone marrow and cartilage. From these results, the appropriate location for the implant system is revealed on the basis of the current distribution and differences in the wave impedance of interfacing tissues. The possibility of accurate data transmission and suitable treatment planning is confirmed.

  • SAR Computation inside Fetus by RF Coil during MR Imaging Employing Realistic Numerical Pregnant Woman Model

    Satoru KIKUCHI  Kazuyuki SAITO  Masaharu TAKAHASHI  Koichi ITO  Hiroo IKEHIRA  

     
    PAPER

      Vol:
    E92-B No:2
      Page(s):
    431-439

    This paper presents the computational electromagnetic dosimetry inside an anatomically based pregnant woman models exposed to electromagnetic wave during magnetic resonance imaging. The two types of pregnant woman models corresponding to early gestation and 26 weeks gestation were used for this study. The specific absorption rate (SAR) in and around a fetus were calculated by radiated electromagnetic wave from highpass and lowpass birdcage coil. Numerical calculation results showed that high SAR region is observed at the body in the vicinity of gaps of the coil, and is related to concentrated electric field in the gaps of human body such as armpit and thigh. Moreover, it has confirmed that the SAR in the fetus is less than International Electrotechnical Commission limit of 10 W/kg, when whole-body average SARs are 2 W/kg and 4 W/kg, which are the normal operating mode and first level controlled operating mode, respectively.

  • Near-Field Mapping System Using Fiber-Based Electro-Optic Probe for Specific Absorption Rate Measurement

    Hiroyoshi TOGO  Naofumi SHIMIZU  Tadao NAGATSUMA  

     
    INVITED PAPER

      Vol:
    E90-C No:2
      Page(s):
    436-442

    We have developed a near-field mapping system with a fiber-based electro-optic (EO) probe for microwave antenna characterization. In this probe, an EO crystal is mounted on the tip of an optical fiber through a collimating lens. Since the lens allows the crystal thickness to be lengthened by reducing the loss of an optical beam coupling back to the optical fiber, sensitivity is improved. Because the tip of the EO probe consists of a 1-mm-cubic EO crystal and contains no metallic components, there is very little disturbance of the mapped electric field. Fixing the optical fiber in a thin glass tube provides stable sensitivity during long-term mapping over a large area. The fabricated EO probe has a dynamic range larger than 45 dB, flat sensitivity from 1.95 to 20 GHz, and directivity with cross-axis sensitivity isolation greater than 30 dB. A comparison of the measured and calculated near fields of a dipole antenna showed negligible static or inductive coupling between the EO probe and the dipole antenna. Using a tissue-equivalent phantom to assess the specific absorption rate (SAR), we demonstrated the potential of the EO probe for mapping the electric field with information of amplitude and phase. The EO probe can detect an electric field of less than 0.6 V/m, which corresponds to a SAR of 0.5 mW/kg. This value satisfies the minimum detection limit defined in the regulations for determining SAR. This result shows the potential of the near-field mapping system with the fiber-based EO probe in practical applications.

  • Effect of Head Size for Cellular Telephone Exposure on EM Absorption

    Ae-Kyoung LEE  Jeong-Ki PACK  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E85-B No:3
      Page(s):
    698-701

    Scaled models for an anatomical head model and a simple head model are used to investigate the effects of head size on SAR characteristics for a cellular phone exposure at 835 MHz. From the results, we can see that a larger head produces a higher localized SAR and a lower whole-head averaged SAR.

  • Calculation of Temperature Rises in the Human Eye Exposed to EM Waves in the ISM Frequency Bands

    Akimasa HIRATA  Gou USHIO  Toshiyuki SHIOZAWA  

     
    PAPER-EMC Simulation

      Vol:
    E83-B No:3
      Page(s):
    541-548

    The interaction between the human eye and electromagnetic (EM) waves in the ISM (industrial, scientific, and medical) frequency bands is investigated with the use of the finite-difference time-domain (FDTD) method. In order to assess possible health hazards, the specific absorption rates (SARs) are calculated and compared with the recommended safety standards. In particular, we calculate temperature rises in the human eye to assess the possibility of microwave-induced cataract formation. The results show that the maximum values of averaged SARs are less than the standard levels. In addition, we observed what is called the 'hot spot' in the region of eye humor at 2.4 GHz but not at 900 MHz and 5.8 GHz. Furthermore, the maximum temperature rise due to the incident EM power density of 5.0 mW/cm2, which is the MPE (maximum permissible exposure) limit for controlled environments, has been found to be at most 0.26 at 5.8 GHz, which is small compared with the threshold temperature rise 3.0 for cataract formation.

  • FDTD Analysis of Electromagnetic Interaction between Portable Telephone and Human Head

    Masao TAKI  So-ichi WATANABE  Toshio NOJIMA  

     
    INVITED PAPER

      Vol:
    E79-C No:10
      Page(s):
    1300-1307

    Finite-difference time-domain (FDTD) analysis is performed to evaluate the distributions of specific absorption rate (SAR) in a human head during use of a handheld portable telephone. A heterogeneous head model has been assumed which is comprised of 273 108 cubic cells 2.5 mm on a side, with the electrical properties of anatomical equivalents. A handset model has been assumed to be a metal box with either a quarter-wavelength monopole or a half-wavelength dipole operating at 900 MHz or 1.5 GHz. The maximum local SARs in the head are evaluated under various exposure conditions. The dependence of the maximum local SARs on the difference in the structures or parameters of the model, i.e. the distance between the antenna and the head, the heterogeneity of the head, the antenna type, the volume of the smoothing region of the local SAR value, skin electrical constants, and the presence or absence of auricles, are examined. It is shown that the heterogeneity of the head barely affect the maximum local SAR when the telephone is located sufficiently close to the head. It is also shown that the electrical constants of skin which has lower conductivity provide the lower maximum local SAR in the head while the maximum local SAR within the brain is not significantly affected. The auricle which lies in closest proximity to the antenna is shown to have significant effect on the maximum local SAR. It is suggested that the presence of the auricle enhances the maximum local SAR by a factor that is 1.7-2.4 larger than the model without auricles.

  • SAR Distributions in a Human Model Exposed to Electromagnetic Near Field by a Short Electric Dipole

    So-ichi WATANABE  Masao TAKI  

     
    PAPER-Electromagnetic Compatibility

      Vol:
    E79-B No:1
      Page(s):
    77-84

    The SAR distributions over a homogeneous human model exposed to a near field of a short electric dipole in the resonant frequency region were calculated with the spatial resolution of 1cm3 which approximated 1g tissue by using the FDTD method with the expansion technique. The dependences of the SAR distribution on the distance between the model and the source and on frequency were investigated. It was shown that the large local SAR appeared in the parts of the body nearest to the source when the source was located at 20cm from the body, whereas the local SAR were largest in the narrow sections such as the neck and legs when the source was farther than 80cm from the model. It was also shown that, for the near-field exposure in the resonant frequency region, the profile of the layer averaged SAR distribution along the main axis of the body of the human model depended little on frequency, and that the SAR distribution in the section perpendicular to the main axis of the human body depended on frequency. The maximum local SAR per gram tissue over the whole body model was also determined, showing that the ratios of the maximum local SAR to the whole-body averaged SAR for the near-field exposure were at most several times as large as the corresponding ratio for the far-field exposure, when the small source located farther than 20cm from the surface of the human model.

  • Microwave Power Absorption in a Cylindrical Model of Man in the Presence of a Flat Reflector

    Shuzo KUWANO  Kinchi KOKUBUN  

     
    LETTER-Electromagnetic Compatibility

      Vol:
    E78-B No:11
      Page(s):
    1548-1550

    This letter describes the power absorption of a cylindrical man model placed near a flat reflector exposed to TE microwave. The numerical results show that the absorption is in some cases an order of magnitude or more greater than that of the man model without a reflector.

  • Frequency Characteristics of Energy Deposition in Human Model Exposed to Near Field of an Electric or a Magnetic Dipole

    Soichi WATANABE  Masao TAKI  Yoshitsugu KAMIMURA  

     
    PAPER

      Vol:
    E77-B No:6
      Page(s):
    725-731

    The frequency characteristics of whole-body averaged specific absorption rates (SARs) in a human model exposed to a near field of an electric dipole or a magnetic dipole are calculated, using a finite-difference time-domain method. The dependences of the characteristics on the orientation of the dipole and on the distance from the source to the model are investigated. It is shown that the resonant peak of the SAR that appears in the E-polarized far-field exposure is observed only when the source is E-polarized and is located at 80cm, while the peak vanishes or is not noted when the source is located at 40cm and 20cm nor when it is H-polarized. The relationships between the whole-body averaged SARs and the incident electromagnetic field strengths are also investigated. It is suggested that the spatially-averaged value of the dominating component between the electric field and the magnetic field over the space where a human body would occupy provides a relevant measure to estimate the whole-body averaged SAR of a body in the vicinity of a small radiation source.