The search functionality is under construction.

Keyword Search Result

[Keyword] storage(137hit)

1-20hit(137hit)

  • Joint BCH and XOR Decoding for Solid State Drives

    Naoko KIFUNE  Hironori UCHIKAWA  

     
    PAPER-Coding Theory

      Pubricized:
    2023/04/12
      Vol:
    E106-A No:10
      Page(s):
    1322-1329

    At a flash memory, each stored data frame is protected by error correction codes (ECC) such as Bose-Chaudhuri-Hocquenghem (BCH) codes from random errors. Exclusive-OR (XOR) based erasure codes like RAID-5 have also been employed at the flash memory to protect from memory block defects. Conventionally, the ECC and erasure codes are used separately since their target errors are different. Due to recent aggressive technology scaling, additional error correction capability for random errors is required without adding redundancy. We propose an algorithm to improve error correction capability by using XOR parity with a simple counter that counts the number of unreliable bits in the XOR stripe. We also propose to apply Chase decoding to the proposed algorithm. The counter makes it possible to reduce the false correction and execute the efficient Chase decoding. We show that combining the proposed algorithm with Chase decoding can significantly improve the decoding performance.

  • A Memory-Efficient Overwrite Detection Method for Ransomware-Proof SSDs

    Yongsoo JOO  Yeohwan YOON  Jong Ho CHOI  

     
    LETTER-Software System

      Pubricized:
    2023/05/23
      Vol:
    E106-D No:8
      Page(s):
    1283-1286

    As ransomware inevitably overwrites existing data, SSDs can detect ransomware attacks by monitoring overwrites. The state-of-the-art technology uses a hash to monitor overwrites, which consumes tens of bytes of memory per I/O. To improve memory efficiency, we propose a bitmap-based overwrite detection method that uses only one bit per I/O.

  • ZGridBC: Zero-Knowledge Proof Based Scalable and Privacy-Enhanced Blockchain Platform for Electricity Tracking

    Takeshi MIYAMAE  Fumihiko KOZAKURA  Makoto NAKAMURA  Masanobu MORINAGA  

     
    PAPER-Information Network

      Pubricized:
    2023/04/14
      Vol:
    E106-D No:7
      Page(s):
    1219-1229

    The total number of solar power-producing facilities whose Feed-in Tariff (FIT) Program-based ten-year contracts will expire by 2023 is expected to reach approximately 1.65 million in Japan. If the facilities that produce or consume renewable energy would increase to reach a large number, e.g., two million, blockchain would not be capable of processing all the transactions. In this work, we propose a blockchain-based electricity-tracking platform for renewable energy, called ‘ZGridBC,’ which consists of mutually cooperative two novel decentralized schemes to solve scalability, storage cost, and privacy issues at the same time. One is the electricity production resource management, which is an efficient data management scheme that manages electricity production resources (EPRs) on the blockchain by using UTXO tokens extended to two-dimension (period and electricity amount) to prevent double-spending. The other is the electricity-tracking proof, which is a massive data aggregation scheme that significantly reduces the amount of data managed on the blockchain by using zero-knowledge proof (ZKP). Thereafter, we illustrate the architecture of ZGridBC, consider its scalability, security, and privacy, and illustrate the implementation of ZGridBC. Finally, we evaluate the scalability of ZGridBC, which handles two million electricity facilities with far less cost per environmental value compared with the price of the environmental value proposed by METI (=0.3 yen/kWh).

  • Heterogeneous Integration of Precise and Approximate Storage for Error-Tolerant Workloads

    Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER

      Pubricized:
    2022/09/05
      Vol:
    E106-A No:3
      Page(s):
    491-503

    This study proposes a heterogeneous integration of precise and approximate storage in data center storage. The storage control engine allocates precise and error-tolerant applications to precise and approximate storage, respectively. The appropriate use of both precise and approximate storage is examined by applying a non-volatile memory capacity algorithm. To respond to the changes in application over time, the non-volatile memory capacity algorithm changes capacity of storage class memories (SCMs), namely the memory-type SCM (M-SCM) and storage-type SCM (S-SCM), in non-volatile memory resource. A three-dimensional triple-level cell (TLC) NAND flash is used as a large capacity memory. The results indicate that precise storage exhibits a high performance when the maximum storage cost is high. By contrast, with a low maximum storage cost, approximate storage exhibits high performance using a low bit cost approximate multiple-level cell (MLC) S-SCM.

  • Constructions of Optimal Single-Parity Locally Repairable Codes with Multiple Repair Sets

    Yang DING  Qingye LI  Yuting QIU  

     
    LETTER-Coding Theory

      Pubricized:
    2022/08/03
      Vol:
    E106-A No:1
      Page(s):
    78-82

    Locally repairable codes have attracted lots of interest in Distributed Storage Systems. If a symbol of a code can be repaired respectively by t disjoint groups of other symbols, each groups has size at most r, we say that the code symbol has (r, t)-locality. In this paper, we employ parity-check matrix to construct information single-parity (r, t)-locality LRCs. All our codes attain the Singleton-like bound of LRCs where each repair group contains a single parity symbol and thus are optimal.

  • Secondary Ripple Suppression Strategy for a Single-Phase PWM Rectifier Based on Constant Frequency Current Predictive Control

    Hailan ZHOU  Longyun KANG  Xinwei DUAN  Ming ZHAO  

     
    PAPER

      Pubricized:
    2022/03/30
      Vol:
    E105-C No:11
      Page(s):
    667-674

    In the conventional single-phase PWM rectifier, the sinusoidal fluctuating current and voltage on the grid side will generate power ripple with a doubled grid frequency which leads to a secondary ripple in the DC output voltage, and the switching frequency of the conventional model predictive control strategy is not fixed. In order to solve the above two problems, a control strategy for suppressing the secondary ripple based on the three-vector fixed-frequency model predictive current control is proposed. Taking the capacitive energy storage type single-phase PWM rectifier as the research object, the principle of its active filtering is analyzed and a model predictive control strategy is proposed. Simulation and experimental results show that the proposed strategy can significantly reduce the secondary ripple of the DC output voltage, reduce the harmonic content of the input current, and achieve a constant switching frequency.

  • Fully Dynamic Data Management in Cloud Storage Systems with Secure Proof of Retrievability

    Nam-Su JHO  Daesung MOON  Taek-Young YOUN  

     
    PAPER

      Pubricized:
    2022/07/19
      Vol:
    E105-D No:11
      Page(s):
    1872-1879

    For reliable storage services, we need a way not only to monitor the state of stored data but also to recover the original data when some data loss is discovered. To solve the problem, a novel technique called HAIL has been proposed. Unfortunately, HAIL cannot support dynamic data which is changed according to users' modification queries. There are many applications where dynamic data are used. So, we need a way to support dynamic data in cloud services to use cloud storage system for various applications. In this paper, we propose a new technique that can support the use of dynamic data in cloud storage systems. For dynamic data update, we design a new data chunk generation strategy which guarantee efficient data insertion, deletion, and modification. Our technique requires O(1) operations for each data update when existing techniques require O(n) operations where n is the size of data.

  • Cooperative Recording to Increase Storage Efficiency in Networked Home Appliances

    Eunsam KIM  Jinsung KIM  Hyoseop SHIN  

     
    LETTER-Information Network

      Pubricized:
    2021/12/02
      Vol:
    E105-D No:3
      Page(s):
    727-731

    This paper presents a novel cooperative recording scheme in networked PVRs based on P2P networks to increase storage efficiency compared with when PVRs operate independently of each other, while maintaining program availability to a similar degree. We employ an erasure coding technique to guarantee data availability of recorded programs in P2P networks. We determine the data redundancy degree of recorded programs so that the system can support all the concurrent streaming requests for them and maintain as much availability as needed. We also present how to assign recording tasks to PVRs and playback the recorded programs without performance degradation. We show that our proposed scheme improves the storage efficiency significantly, compared with when PVRs do not cooperate with each other, while keeping the playbackability of each request similarly.

  • Trail: An Architecture for Compact UTXO-Based Blockchain and Smart Contract

    Ryunosuke NAGAYAMA  Ryohei BANNO  Kazuyuki SHUDO  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2021/11/09
      Vol:
    E105-D No:2
      Page(s):
    333-343

    In Bitcoin and Ethereum, nodes require a large storage capacity to maintain all of the blockchain data such as transactions. As of September 2021, the storage size of the Bitcoin blockchain has expanded to 355 GB, and it has increased by approximately 50 GB every year over the last five years. This storage requirement is a major hurdle to becoming a block proposer or validator. We propose an architecture called Trail that allows nodes to hold all blocks in a small storage and to generate and validate blocks and transactions. A node in Trail holds all blocks without transactions, UTXOs or account balances. The block size is approximately 8 kB, which is 100 times smaller than that of Bitcoin. On the other hand, a client who issues transactions needs to hold proof of its assets. Thus, compared to traditional blockchains, clients must store additional data. We show that proper data archiving can keep the account device storage size small. Then, we propose a method of executing smart contracts in Trail using a threshold signature. Trail allows more users to be block proposers and validators and improves the decentralization and security of the blockchain.

  • Proposal and Evaluation of IO Concentration-Aware Mechanisms to Improve Efficiency of Hybrid Storage Systems

    Kazuichi OE  Takeshi NANRI  

     
    PAPER

      Pubricized:
    2021/07/30
      Vol:
    E104-D No:12
      Page(s):
    2109-2120

    Hybrid storage techniques are useful methods to improve the cost performance for input-output (IO) intensive workloads. These techniques choose areas of concentrated IO accesses and migrate them to an upper tier to extract as much performance as possible through greater use of upper tier areas. Automated tiered storage with fast memory and slow flash storage (ATSMF) is a hybrid storage system situated between non-volatile memories (NVMs) and solid-state drives (SSDs). ATSMF aims to reduce the average response time for IO accesses by migrating areas of concentrated IO access from an SSD to an NVM. When a concentrated IO access finishes, the system migrates these areas from the NVM back to the SSD. Unfortunately, the published ATSMF implementation temporarily consumes much NVM capacity upon migrating concentrated IO access areas to NVM, because its algorithm executes NVM migration with high priority. As a result, it often delays evicting areas in which IO concentrations have ended to the SSD. Therefore, to reduce the consumption of NVM while maintaining the average response time, we developed new techniques for making ATSMF more practical. The first is a queue handling technique based on the number of IO accesses for NVM migration and eviction. The second is an eviction method that selects only write-accessed partial regions in finished areas. The third is a technique for variable eviction timing to balance the NVM consumption and average response time. Experimental results indicate that the average response times of the proposed ATSMF are almost the same as those of the published ATSMF, while the NVM consumption is three times lower in best case.

  • Private Information Retrieval from Coded Storage in the Presence of Omniscient and Limited-Knowledge Byzantine Adversaries Open Access

    Jun KURIHARA  Toru NAKAMURA  Ryu WATANABE  

     
    PAPER-Coding Theory

      Pubricized:
    2021/03/23
      Vol:
    E104-A No:9
      Page(s):
    1271-1283

    This paper investigates an adversarial model in the scenario of private information retrieval (PIR) from n coded storage servers, called Byzantine adversary. The Byzantine adversary is defined as the one altering b server responses and erasing u server responses to a user's query. In this paper, two types of Byzantine adversaries are considered; 1) the classic omniscient type that has the full knowledge on n servers as considered in existing literature, and 2) the reasonable limited-knowledge type that has information on only b+u servers, i.e., servers under the adversary's control. For these two types, this paper reveals that the resistance of a PIR scheme, i.e., the condition of b and u to correctly obtain the desired message, can be expressed in terms of a code parameter called the coset distance of linear codes employed in the scheme. For the omniscient type, the derived condition expressed by the coset distance is tighter and more precise than the estimation of the resistance by the minimum Hamming weight of the codes considered in existing researches. Furthermore, this paper also clarifies that if the adversary is limited-knowledge, the resistance of a PIR scheme could exceed that for the case of the omniscient type. Namely, PIR schemes can increase their resistance to Byzantine adversaries by allowing the limitation on adversary's knowledge.

  • Cyclic LRCs with Availability from Linearized Polynomials

    Pan TAN  Zhengchun ZHOU   Haode YAN  Yong WANG  

     
    LETTER-Coding Theory

      Pubricized:
    2021/01/18
      Vol:
    E104-A No:7
      Page(s):
    991-995

    Locally repairable codes (LRCs) with availability have received considerable attention in recent years since they are able to solve many problems in distributed storage systems such as repairing multiple node failures and managing hot data. Constructing LRCs with locality r and availability t (also called (r, t)-LRCs) with new parameters becomes an interesting research subject in coding theory. The objective of this paper is to propose two generic constructions of cyclic (r, t)-LRCs via linearized polynomials over finite fields. These two constructions include two earlier ones of cyclic LRCs from trace functions and truncated trace functions as special cases and lead to LRCs with new parameters that can not be produced by earlier ones.

  • Rapid Recovery by Maximizing Page-Mapping Logs Deactivation

    Jung-Hoon KIM  

     
    LETTER-Software System

      Pubricized:
    2021/02/25
      Vol:
    E104-D No:6
      Page(s):
    885-889

    As NAND flash-based storage has been settled, a flash translation layer (FTL) has been in charge of mapping data addresses on NAND flash memory. Many FTLs implemented various mapping schemes, but the amount of mapping data depends on the mapping level. However, the FTL should contemplate mapping consistency irrespective of how much mapping data dwell in the storage. Furthermore, the recovery cost by the inconsistency needs to be considered for a faster storage reboot time. This letter proposes a novel method that enhances the consistency for a page-mapping level FTL running a legacy logging policy. Moreover, the recovery cost of page mappings also decreases. The novel method is to adopt a virtually-shrunk segment and deactivate page-mapping logs by assembling and storing the segments. This segment scheme already gave embedded NAND flash-based storage enhance its response time in our previous study. In addition to that improved result, this novel plan maximizes the page-mapping consistency, therefore improves the recovery cost compared with the legacy page-mapping FTL.

  • Lifespan Extension of an IoT System with a Fixed Lithium Battery

    Ho-Young KIM  Seong-Won LEE  

     
    PAPER-Software System

      Pubricized:
    2020/09/15
      Vol:
    E103-D No:12
      Page(s):
    2559-2567

    In an internet of things (IoT) system using an energy harvesting device and a secondary (2nd) battery, regardless of the age of the 2nd battery, the power management shortens the lifespan of the entire system. In this paper, we propose a scheme that extends the lifetime of the energy harvesting-based IoT system equipped with a Lithium 2nd battery. The proposed scheme includes several policies of using a supercapacitor as a primary energy storage, limiting the charging level according to the predicted harvesting energy, swinging the energy level around the minimum stress state of charge (SOC) level, and delaying the charge start time. Experiments with natural solar energy measurements based on a battery aging approximation model show that the proposed method can extend the operation lifetime of an existing IoT system from less than one and a half year to more than four years.

  • Development of a Low Frequency Electric Field Probe Integrating Data Acquisition and Storage

    Zhongyuan ZHOU  Mingjie SHENG  Peng LI  Peng HU  Qi ZHOU  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2020/02/27
      Vol:
    E103-C No:8
      Page(s):
    345-352

    A low frequency electric field probe that integrates data acquisition and storage is developed in this paper. An electric small monopole antenna printed on the circuit board is used as the receiving antenna; the rear end of the monopole antenna is connected to the integral circuit to achieve the flat frequency response; the logarithmic detection method is applied to obtain a high measurement dynamic range. In addition, a Microprogrammed Control Unit is set inside to realize data acquisition and storage. The size of the probe developed is not exceeding 20 mm × 20 mm × 30 mm. The field strength 0.2 V/m ~ 261 V/m can be measured in the frequency range of 500 Hz ~ 10 MHz, achieving a dynamic range over 62 dB. It is suitable for low frequency electric field strength measurement and shielding effectiveness test of small shield.

  • A Server-Based Distributed Storage Using Secret Sharing with AES-256 for Lightweight Safety Restoration

    Sanghun CHOI  Shuichiro HARUTA  Yichen AN  Iwao SASASE  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2020/04/20
      Vol:
    E103-D No:7
      Page(s):
    1647-1659

    Since the owner's data might be leaked from the centralized server storage, the distributed storage schemes with the server storage have been investigated. To ensure the owner's data in those schemes, they use Reed Solomon code. However, those schemes occur the burden of data capacity since the parity data are increased by how much the disconnected data can be restored. Moreover, the calculation time for the restoration will be higher since many parity data are needed to restore the disconnected data. In order to reduce the burden of data capacity and the calculation time, we proposed the server-based distributed storage using Secret Sharing with AES-256 for lightweight safety restoration. Although we use Secret Sharing, the owner's data will be safely kept in the distributed storage since all of the divided data are divided into two pieces with the AES-256 and stored in the peer storage and the server storage. Even though the server storage keeps the divided data, the server and the peer storages might know the pair of divided data via Secret Sharing, the owner's data are secure in the proposed scheme from the inner attack of Secret Sharing. Furthermore, the owner's data can be restored by a few parity data. The evaluations show that our proposed scheme is improved for lightweight, stability, and safety.

  • Analysis on Hybrid SSD Configuration with Emerging Non-Volatile Memories Including Quadruple-Level Cell (QLC) NAND Flash Memory and Various Types of Storage Class Memories (SCMs)

    Yoshiki TAKAI  Mamoru FUKUCHI  Chihiro MATSUI  Reika KINOSHITA  Ken TAKEUCHI  

     
    PAPER-Integrated Electronics

      Vol:
    E103-C No:4
      Page(s):
    171-180

    This paper analyzes the optimal SSD configuration including emerging non-volatile memories such as quadruple-level cell (QLC) NAND flash memory [1] and storage class memories (SCMs). First, SSD performance and SSD endurance lifetime of hybrid SSD are evaluated in four configurations: 1) single-level cell (SLC)/QLC NAND flash, 2) SCM/QLC NAND flash, 3) SCM/triple-level cell (TLC)/QLC NAND flash and 4) SCM/TLC NAND flash. Furthermore, these four configurations are compared in limited cost. In case of cold workloads or high total SSD cost assumption, SCM/TLC NAND flash hybrid configuration is recommended in both SSD performance and endurance lifetime. For hot workloads with low total SSD cost assumption, however, SLC/QLC NAND flash hybrid configuration is recommended with emphasis on SSD endurance lifetime. Under the same conditions as above, SCM/TLC/QLC NAND flash tri-hybrid is the best configuration in SSD performance considering cost. In particular, for prxy_0 (write-hot workload), SCM/TLC/QLC NAND flash tri-hybrid achieves 67% higher IOPS/cost than SCM/TLC NAND flash hybrid. Moreover, the configurations with the highest IOPS/cost in each workload and cost limit are picked up and analyzed with various types of SCMs. For all cases except for the case of prxy_1 with high total SSD cost assumption, middle-end SCM (write latency: 1us, read latency: 1us) is recommended in performance considering cost. However, for prxy_1 (read-hot workload) with high total SSD cost assumption, high-end SCM (write latency: 100ns, read latency: 100ns) achieves the best performance.

  • System Performance Comparison of 3D Charge-Trap TLC NAND Flash and 2D Floating-Gate MLC NAND Flash Based SSDs

    Mamoru FUKUCHI  Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER-Integrated Electronics

      Vol:
    E103-C No:4
      Page(s):
    161-170

    This paper analyzes the system-level performance of Storage Class Memory (SCM)/NAND flash hybrid solid-state drives (SSDs) and SCM/NAND flash/NAND flash tri-hybrid SSDs in difference types of NAND flash memory. There are several types of NAND flash memory, i.e. 2-dimensional (2D) or 3-dimensional (3D), charge-trap type (CT) and floating-gate type (FG) and multi-level cell (MLC) or triple-level cell (TLC). In this paper, the following four types of NAND flash memory are analyzed: 1) 3D CT TLC, 2) 3D FG TLC, 3) 2D FG TLC, and 4) 2D FG MLC NAND flash. Regardless of read- and write-intensive workloads, SCM/NAND flash hybrid SSD with low cost 3D CT TLC NAND flash achieves the best performance that is 20% higher than that with higher cost 2D FG MLC NAND flash. The performance improvement of 3D CT TLC NAND flash can be obtained by the short write latency. On the other hand, in case of tri-hybrid SSD, SCM/3D CT TLC/3D CT TLC NAND flash tri-hybrid SSD improves the performance 102% compared to SCM/2D FG MLC/3D CT TLC NAND flash tri-hybrid SSD. In addition, SCM/2D FG MLC/2D FG MLC NAND flash tri-hybrid SSD shows 49% lower performance than SCM/2D FG MLC/3D CT TLC NAND flash tri-hybrid SSD. Tri-hybrid SSD flash with 3D CT TLC NAND flash is the best performance in tri-hybrid SSD thanks to larger block size and word-line (WL) write. Therefore, in 3D CT TLC NAND flash based SSDs, higher cost MLC NAND flash is not necessary for hybrid SSD and tri-hybrid SSD for data center applications.

  • Master-Slave FF Using DICE Capable of Tolerating Soft Errors Occurring Around Clock Edge

    Kazuteru NAMBA  

     
    LETTER-Dependable Computing

      Pubricized:
    2020/01/06
      Vol:
    E103-D No:4
      Page(s):
    892-895

    This letter reveals that an edge-triggered master-slave flip-flop (FF) using well-known soft error tolerant DICE (dual interlocked storage cell) is vulnerable to soft errors occurring around clock edge. This letter presents a design of a soft error tolerant FF based on the master-slave FF using DICE. The proposed design modifies the connection between the master and slave latches to make the FF not vulnerable to these errors. The hardware overhead is almost the same as that for the original edge-triggered FF using the DICE.

  • Distributed Key-Value Storage for Edge Computing and Its Explicit Data Distribution Method

    Takehiro NAGATO  Takumi TSUTANO  Tomio KAMADA  Yumi TAKAKI  Chikara OHTA  

     
    PAPER-Network

      Pubricized:
    2019/08/05
      Vol:
    E103-B No:1
      Page(s):
    20-31

    In this article, we propose a data framework for edge computing that allows developers to easily attain efficient data transfer between mobile devices or users. We propose a distributed key-value storage platform for edge computing and its explicit data distribution management method that follows the publish/subscribe relationships specific to applications. In this platform, edge servers organize the distributed key-value storage in a uniform namespace. To enable fast data access to a record in edge computing, the allocation strategy of the record and its cache on the edge servers is important. Our platform offers distributed objects that can dynamically change their home server and allocate cache objects proactively following user-defined rules. A rule is defined in a declarative manner and specifies where to place cache objects depending on the status of the target record and its associated records. The system can reflect record modification to the cached records immediately. We also integrate a push notification system using WebSocket to notify events on a specified table. We introduce a messaging service application between mobile appliances and several other applications to show how cache rules apply to them. We evaluate the performance of our system using some sample applications.

1-20hit(137hit)