The search functionality is under construction.

Keyword Search Result

[Keyword] subcarrier(72hit)

1-20hit(72hit)

  • Low Complexity Resource Allocation in Frequency Domain Non-Orthogonal Multiple Access Open Access

    Satoshi DENNO  Taichi YAMAGAMI  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/05/08
      Vol:
    E106-B No:10
      Page(s):
    1004-1014

    This paper proposes low complexity resource allocation in frequency domain non-orthogonal multiple access where many devices access with a base station. The number of the devices is assumed to be more than that of the resource for network capacity enhancement, which is demanded in massive machine type communications (mMTC). This paper proposes two types of resource allocation techniques, all of which are based on the MIN-MAX approach. One of them seeks for nicer resource allocation with only channel gains. The other technique applies the message passing algorithm (MPA) for better resource allocation. The proposed resource allocation techniques are evaluated by computer simulation in frequency domain non-orthogonal multiple access. The proposed technique with the MPA achieves the best bit error rate (BER) performance in the proposed techniques. However, the computational complexity of the proposed techniques with channel gains is much smaller than that of the proposed technique with the MPA, whereas the BER performance of the proposed techniques with channel gains is only about 0.1dB inferior to that with the MPA in the multiple access with the overloading ratio of 1.5 at the BER of 10-4. They attain the gain of about 10dB at the BER of 10-4 in the multiple access with the overloading ration of 2.0. Their complexity is 10-16 as small as the conventional technique.

  • A Novel Unambiguous Acquisition Algorithm Based on Segmentation Reconstruction for BOC(n,n) Signal Open Access

    Yuanfa JI  Sisi SONG  Xiyan SUN  Ning GUO  Youming LI  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2022/08/26
      Vol:
    E106-B No:3
      Page(s):
    287-295

    In order to improve the frequency band utilization and avoid mutual interference between signals, the BD3 satellite signals adopt Binary Offset Carrier (BOC) modulation. On one hand, BOC modulation has a narrow main peak width and strong anti-interference ability; on the other hand, the phenomenon of false acquisition locking caused by the multi-peak characteristic of BOC modulation itself needs to be resolved. In this context, this paper proposes a new BOC(n,n) unambiguous acquisition algorithm based on segmentation reconstruction. The algorithm is based on splitting the local BOC signal into four parts in each subcarrier period. The branch signal and the received signal are correlated with the received signal to generate four branch correlation signals. After a series of combined reconstructions, the final signal detection function completely eliminates secondary peaks. A simulation shows that the algorithm can completely eliminate the sub-peak interference for the BOC signals modulated by subcarriers with different phase. The characteristics of narrow correlation peak are retained. Experiments show that the proposed algorithm has superior performance in detection probability and peak-to-average ratio.

  • Accurate BER Approximation for SIM with BPSK and Multiple Transmit Apertures over Strong Atmospheric Turbulence

    Jinkyu KANG  Seongah JEONG  Hoojin LEE  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/07/30
      Vol:
    E105-A No:2
      Page(s):
    126-129

    In this letter, we derive a novel and accurate closed-form bit error rate (BER) approximation of the optical wireless communications (OWC) systems for the sub-carrier intensity modulation (SIM) employing binary phase-shift keying (BPSK) with multiple transmit and single receive apertures over strong atmospheric turbulence channels, which makes it possible to effectively investigate and predict the BER performance for various system configurations. Furthermore, we also derive a concise asymptotic BER formula to quantitatively evaluate the asymptotically achievable error performance (i.e., asymptotic diversity and combining gains) in the high signal-to-noise (SNR) regimes. Some numerical results are provided to corroborate the accuracy and effectiveness of our theoretical expressions.

  • Green Resource Allocation in OFDMA Networks with Opportunistic Beamforming-Based DF Relaying

    Tao WANG  Mingfang WANG  Yating WU  Yanzan SUN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/02/04
      Vol:
    E102-B No:8
      Page(s):
    1715-1727

    This paper proposes an energy efficiency (EE) maximized resource allocation (RA) algorithm in orthogonal frequency division multiple access (OFDMA) downlink networks with multiple relays, where a novel opportunistic subcarrier pair based decode-and-forward (DF) protocol with beamforming is used. Specifically, every data transmission is carried out in two consecutive time slots. During every transmission, multiple parallel paths, including relayed paths and direct paths, are established by the proposed RA algorithm. As for the protocol, each subcarrier in the 1st slot can be paired with any subcarrier in 2nd slot to best utilize subcarrier resources. Furthermore, for each relayed path, multiple (not just single or all) relays can be chosen to apply beamforming at the subcarrier in the 2nd slot. Each direct path is constructed by an unpaired subcarrier in either the 1st or 2nd slot. In order to guarantee an acceptable spectrum efficiency, we also introduce a minimum rate constraint. The EE-maximized problem is a highly nonlinear optimization problem, which contains both continuous, discrete variables and has a fractional structure. To solve the problem, the best relay set and resource allocation for a relayed path are derived first, then we design an iterative algorithm to find the optimal RA for the network. Finally, numerical experiments are taken to demonstrate the effectiveness of the proposed algorithm, and show the impact of minimum rate requirement, user number and circuit power on the network EE.

  • Digital Self-Interference Cancellation for LTE-Compatible In-Band Full-Duplex Systems

    Changyong SHIN  Jiho HAN  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E101-A No:5
      Page(s):
    822-830

    In this paper, we present self-interference (SI) cancellation techniques in the digital domain for in-band full-duplex systems employing orthogonal frequency division multiple access (OFDMA) in the downlink (DL) and single-carrier frequency division multiple access (SC-FDMA) in the uplink (UL), as in the long-term evolution (LTE) system. The proposed techniques use UL subcarrier nulling to accurately estimate SI channels without any UL interference. In addition, by exploiting the structures of the transmitter imperfection and the known or estimated parameters associated with the imperfection, the techniques can further improve the accuracy of SI channel estimation. We also analytically derive the lower bound of the mean square error (MSE) performance and the upper bound of the signal-to-interference-plus-noise ratio (SINR) performance for the techniques, and show that the performance of the techniques are close to the bounds. Furthermore, by utilizing the SI channel estimates and the nonlinear signal components of the SI caused by the imperfection to effectively eliminate the SI, the proposed techniques can achieve SINR performance very close to the one in perfect SI cancellation. Finally, because the SI channel estimation of the proposed techniques is performed in the time domain, the techniques do not require symbol time alignment between SI and UL symbols.

  • Performance Evaluation of Variable Bandwidth Channel Allocation Scheme in Multiple Subcarrier Multiple Access

    Nitish RAJORIA  Hiromu KAMEI  Jin MITSUGI  Yuusuke KAWAKITA  Haruhisa ICHIKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/03
      Vol:
    E101-B No:2
      Page(s):
    564-572

    Multiple Subcarrier Multiple Access (MSMA) enables concurrent sensor data streamings from multiple wireless and batteryless sensors using the principle of subcarrier backscatter used extensively in passive RFID. Since the interference cancellation performance of MSMA depends on the Signal to Interference plus Noise Ratio of each subcarrier, the choice of channel allocation scheme is essential. Since the channel allocation is a combinatorial problem, obtaining the true optimal allocation requires a vast amount of examinations which is impracticable in a system where we have tens of sensor RF tags. It is particularly true when we have variable distance and variable bandwidth sensor RF tags. This paper proposes a channel allocation scheme in the variable distance and variable bandwidth MSMA system based on a newly introduced performance index, total contamination power, to prioritize indecision cases. The performance of the proposal is evaluated with existing methods in terms of average communication capacity and system fairness using MATLAB Monte Carlo simulation to reveal its advantage. The accuracy of the simulation is also verified with the result obtained from the brute force method.

  • Wireless Multi-View Video Streaming with Subcarrier Allocation

    Takuya FUJIHASHI  Shiho KODERA  Shunsuke SARUWATARI  Takashi WATANABE  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E99-B No:2
      Page(s):
    542-554

    When an access point transmits multi-view video over a wireless network with subcarriers, bit errors occur in the low quality subcarriers. The errors cause a significant degradation of video quality. The present paper proposes Significance based Multi-view Video Streaming with Subcarrier Allocation (SMVS/SA) for the maintenance of high video quality. SMVS/SA transmits a significant video frame over a high quality subcarrier to minimize the effect of the errors. SMVS/SA has two contributions. The first contribution is subcarrier-gain based multi-view rate distortion to predict each frame's significance based on the quality of subcarriers. The second contribution is heuristic algorithms to decide the sub-optimal allocation between video frames and subcarriers. The heuristic algorithms exploit the feature of multi-view video coding, which is a video frame is encoded using the previous time or camera video frame, and decides the sub-optimal allocation with low computation. To evaluate the performance of SMVS/SA in a real wireless network, we measure the quality of subcarriers using a software radio. Evaluations using MERL's benchmark test sequences and the measured subcarrier quality reveal that SMVS/SA achieves low traffic and communication delay with a slight degradation of video quality. For example, SMVS/SA improves video quality by up to 2.7 [dB] compared to the multi-view video transmission scheme without subcarrier allocation.

  • Comparative Analysis on Channel Allocation Schemes in Multiple Subcarrier Passive Communication System

    Nitish RAJORIA  Yuki IGARASHI  Jin MITSUGI  Yusuke KAWAKITA  Haruhisa ICHIKAWA  

     
    PAPER

      Vol:
    E98-B No:9
      Page(s):
    1777-1784

    Multiple subcarrier passive communication is a new research area which enables a type of frequency division multiple access with wireless and batteryless sensor RF tags just by implementing RF switches to produce dedicated subcarriers. Since the mutual interference among subcarriers is unevenly distributed over the frequency band, careless allocations of subcarrier frequencies may result in degraded network performance and inefficient use of the frequency resource. In this paper, we examine four subcarrier frequency allocation schemes using MATLAB numerical simulations. The four schemes are evaluated in terms of the communication capacity and access fairness among sensor RF tags. We found that the subcarrier allocation scheme plays an important role in multiple subcarrier communication and can improves the communication capacity by 35%.

  • Blind Interference Suppression Scheme by Eigenvector Beamspace CMA Adaptive Array with Subcarrier Transmission Power Assignment for Spectrum Superposing

    Kazuki MARUTA  Jun MASHINO  Takatoshi SUGIYAMA  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:6
      Page(s):
    1050-1057

    This paper proposes a novel blind adaptive array scheme with subcarrier transmission power assignment (STPA) for spectrum superposing in cognitive radio networks. The Eigenvector Beamspace Adaptive Array (EBAA) is known to be one of the blind adaptive array algorithms that can suppress inter-system interference without any channel state information (CSI). However, EBAA has difficulty in suppressing interference signals whose Signal to Interference power Ratio (SIR) values at the receiver are around 0dB. With the proposed scheme, the ST intentionally provides a level difference between subcarriers. At the receiver side, the 1st eigenvector of EBAA is applied to the received signals of the subcarrier assigned higher power and the 2nd eigenvector is applied to those assigned lower power. In order to improve interference suppression performance, we incorporate Beamspace Constant Modulus Algorithm (BSCMA) into EBAA (E-BSCMA). Additionally, STPA is effective in reducing the interference experienced by the primary system. Computer simulation results show that the proposed scheme can suppress interference signals received with SIR values of around 0dB while improving operational SIR for the primary system. It can enhance the co-existing region of 2 systems that share a spectrum.

  • Removing Deep Faded Subcarrier Channel for Cooperative Multiuser Diversity OFDMA Based on Low Granularity Block

    Yuta IDA  Chang-Jun AHN  Takahiro MATSUMOTO  Shinya MATSUFUJI  

     
    PAPER-Communication Theory and Signals

      Vol:
    E97-A No:12
      Page(s):
    2586-2594

    To achieve more high speed and high quality systems of wireless communications, orthogonal frequency division multiple access (OFDMA) has been proposed. Moreover, OFDMA considering the multiuser diversity (MUDiv) has been also proposed to achieve more high system performance. On the other hand, the conventional MUDiv/OFDMA requires large complexity to select the subcarrier of each user. To solve this problem, we have proposed a MUDiv/OFDMA based on the low granularity block (LGB). However, it degrades the system performance in the environment which contains many deep faded subcarrier channels. Therefore, in this paper, we propose a cooperative LGB-MUDiv/OFDMA to mitigate the influence due to the deep faded subcarrier channel.

  • Optimally Joint Subcarrier Pairing and Power Allocation for OFDM System with Multihop Symbol Level DF Relaying

    Ning WANG  Tingting MIAO  Hongwen YANG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E97-B No:12
      Page(s):
    2800-2808

    Subcarrier pairing (SP) and power allocation (PA) can improve the channel capacity of the OFDM multi-hop relay system. Due to limitations of processing complexity and energy consumption, symbol-level relaying, which only regenerates the constellation symbols at relay nodes, is more practical than code-level relaying that requires full decoding and encoding. By modeling multi-hop symbol-level relaying as a multi-staged parallel binary symmetric channel, this paper introduces a jointly optimal SP and PA scheme which maximizes the end to end data rate. Analytical arguments are given to reveal the structures and properties of the optimal solution, and simulation results are presented to illustrate and justify the optimality.

  • Subcarrier Allocation for the Recovery of a Faulty Cell in an OFDM-Based Wireless System

    Changho YIM  Unil YUN  Eunchul YOON  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:10
      Page(s):
    2243-2250

    An efficient subcarrier allocation scheme of a supporting cell is proposed to recover the communication of faulty cell users in an OFDM-based wireless system. With the proposed subcarrier allocation scheme, the number of subcarriers allocated to faulty cell users is maximized while the average throughput of supporting cell users is maintained at a desired level. To find the maximum number of subcarriers allocated to faulty cell users, the average throughput of the subcarrier with the k-th smallest channel gain in a subcarrier group is derived by an inductive method. It is shown by simulation that the proposed subcarrier allocation scheme can provide more subcarriers to faulty cell users than the random selection subcarrier allocation scheme.

  • Subcarrier Intensity Modulation/Spatial Modulation for Optical Wireless Communications

    Yan CHENG  Seung-Hoon HWANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:5
      Page(s):
    1044-1049

    In this paper, we investigate a combination scheme of subcarrier intensity-modulation (SIM) with spatial modulation (SM) for optical wireless communication. Using computer simulation, the performances of the proposed SIM/SM scheme are investigated and compared with those of the conventional SIM scheme in the additive white gaussian noise (AWGN) as well as in outdoor environment with turbulence induced fading characteristics. Numerical results show that the proposed SIM/SM scheme can outperform the conventional SIM in an environment with different spectral efficiencies. When the spectral efficiency is varied from 2bits/s/Hz to 4bits/s/Hz, an Eb/N0 gain of 2dB to 5dB is achieved, when the bit error rate of 10-5 is maintained. It shows that the employment of SM may further improve the power efficiency of SIM, when the number of subcarriers increases according to the spectral efficiency. When the spectral efficiency is 4bits/s/Hz, the SIM/SM scheme for 0.5 of log-irradiance variance in the log-normal turbulence channel shows the same performance as SIM with variance of 0.3. This means that the SIM/SM can be an alternative choice in even worse environments.

  • IEEE 802.11af TVWS-WLAN with Partial Subcarrier System for Effective TVWS Utilization

    Keiichi MIZUTANI  Zhou LAN  Hiroshi HARADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:4
      Page(s):
    886-895

    Demand for wireless communication is increasing significantly, but the frequency resources available for wireless communication are quite limited. Currently, various countries are prompting the use of TV white spaces (TVWS). IEEE 802.11 Working Group (WG) has started a Task Group (TG), namely IEEE 802.11af, to develop an international standard for Wireless local Area Networks (WLANs) in TVWS. In order to increase maximum throughput, a channel aggregation mechanism is introduced in the draft standard. In Japan, ISDB-T based area-one-segment broadcasting system (Area-1seg) which is a digital TV broadcast service in limited areas has been permitted to offer actual TVWS services since April 2012. The operation of the IEEE 802.11af system shall not jeopardize the Area-1seg system due to the common operating frequency band. If the Area-1seg partially overlaps with the IEEE 802.11af in some frequency, the IEEE 802.11af cannot use the channel aggregation mechanism due to a lack of channels. As a result, the throughput of the IEEE 802.11af deteriorates. In this paper, the physical layer of IEEE 802.11af D4.0 is introduced briefly, and a partial subcarrier system for IEEE 802.11af is proposed to efficiently use the TVWS spectrum. The IEEE 802.11af co-exist with the Area-1seg by using null subcarriers. Computer simulation shows up to around 70% throughput gain is achieved with the proposed mechanism.

  • Performance Analysis of MIMO/FSO Systems Using SC-QAM Signaling over Atmospheric Turbulence Channels

    Trung HA DUYEN  Anh T. PHAM  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    49-56

    We theoretically study the performance of multiple-input multiple-output (MIMO) free-space optical (FSO) systems using subcarrier quadrature modulation (SC-QAM) signaling. The system average symbol-error rate (ASER) is derived taking into account the atmospheric turbulence effects on the MIMO/FSO channel, which is modeled by log-normal and the gamma-gamma distributions for weak and moderate-to-strong turbulence conditions. We quantitatively discuss the influence of index of refraction structure parameter, link distance, and different MIMO configurations on the system ASER. We also analytically derive and discuss the MIMO/FSO average (ergodic) channel capacity (ACC), which is expressed in terms of average spectral efficiency (ASE), under the impact of various channel conditions. Monte Carlo simulations are also performed to validate the mathematical analysis, and a good agreement between numerical and simulation results is confirmed.

  • Outage Channel Capacity of Direct/Cooperative AF Relay Switched SC-FDMA Using Spectrum Division/Adaptive Subcarrier Allocation

    Masayuki NAKADA  Tatsunori OBARA  Tetsuya YAMAMOTO  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:4
      Page(s):
    1001-1011

    In this paper, a direct/cooperative relay switched single carrier-frequency division multiple access (SC-FDMA) using amplify-and-forward (AF) protocol and spectrum division/adaptive subcarrier allocation (SDASA) is proposed. Using SDASA, the transmit SC signal spectrum is divided into sub-blocks, to each of which a different set of subcarriers (resource block) is adaptively allocated according to the channel conditions of mobile terminal (MT)-relay station (RS) link, RS-base station (BS) link, and MT-BS link. Cooperative relay does not always provide higher capacity than the direct communication. Switching between direct communication and cooperative relay is done depending on the channel conditions of MT-RS, RS-BS, and MT-BS links. We evaluate the achievable channel capacity by the Monte-Carlo numerical computation method. It is shown that the proposed scheme can reduce the transmit power by about 6.0 (2.0) dB compared to the direct communication (the cooperative AF relay) for a 1%-outage capacity of 3.0 bps/Hz.

  • Examination of Effective UWB Avoidance Based on Experiments for Coexistence with Other Wireless Systems

    Huan-Bang LI  Kunio YATA  Kenichi TAKIZAWA  Noriaki MIYAZAKI  Takashi OKADA  Kohei OHNO  Takuji MOCHIZUKI  Eishin NAKAGAWA  Takehiko KOBAYASHI  

     
    PAPER

      Vol:
    E96-A No:1
      Page(s):
    274-284

    An ultra-wideband (UWB) system usually occupies a large frequency band, which may overlap with the spectrum of a narrow band system. The latter is referred to as a victim system. To effectively use frequency, a UWB system may create a notch in its spectrum to accommodate the victim signal for interference avoidance. Parameters of the notch such as the depth and the width of a notch need to be decided in accordance to victim systems. In this paper, we investigate the effective UWB avoidance by examining the suitable notch based on experimental evaluation. In the experiments, 3GPP LTE, Mobile WiMAX, as well as an IMT Advanced Test-bed are respectively employed to represent different types of victim systems. The UWB system is set up based on WiMedia specifications and operates at the UWB low band of 3.1–4.8 GHz. A notch is fabricated by nullifying the related subcarriers of the UWB signal. In addition, a filter or a window function is formed and employed to further smooth the notch. Bit error rate (BER) or packet error rate (PER) performances of victim systems are measured and used to evaluate the UWB interference. Our results show that when a notch is properly formed, the interference level introduced by UWB can be below the permitted level by regulations.

  • Subcarrier Allocation for Physical-Layer Security in Cooperative OFDMA Networks

    Chunxiao CAI  Yueming CAI  Weiwei YANG  

     
    LETTER

      Vol:
    E94-B No:12
      Page(s):
    3387-3390

    Secrecy on the physical layer is receiving increased research interest due to its theoretical and practical importance. In this letter, a subcarrier allocation scheme is proposed for physical-layer security in cooperative orthogonal frequency division multiple access (OFDMA) networks that use the Amplify-and-Forward (AF) strategy. We consider the subcarrier pairing and assignment to maximize overall system rates subject to a secrecy level requirement. Monte Carlo simulations are carried out to validate our analysis.

  • Subcarrier Mapping for Single-User SC-FDMA Relay Communications

    Yu HEMMI  Koichi ADACHI  Tomoaki OHTSUKI  

     
    LETTER

      Vol:
    E94-A No:12
      Page(s):
    2776-2779

    A combination of single-carrier frequency-division mult-iple-access (SC-FDMA) and relay transmission is effective for performance improvement in uplink transmission. In SC-FDMA, a mapping strategy of user's spectrum has an enormous impact on system performance. In the relay communication, the optimum mapping strategy may differentiate from that in direct communication because of the independently distributed channels among nodes. In this letter, how each link should be considered in subcarrier mapping is studied and the impact of mapping strategies on the average bit error rate (BER) performance of single-user SC-FDMA relay communications will be given.

  • Balanced Frequency Reuse with Ordering and Directional Subcarrier Allocation in OFDMA Systems

    Tae-Kyeong CHO  Chang-Yeong OH  Tae-Jin LEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:12
      Page(s):
    3480-3489

    In multi-cell OFDMA-based networks, co-channel interference (CCI) is inevitable when the frequency reuse scheme is used. The CCI affects the performance of users, especially that of cell edge users. Several frequency reuse schemes and subcarrier allocation algorithms have been proposed to solve the CCI problem. Nevertheless, it is difficult to improve both the cell capacity and the performance of cell edge users since they have a trade-off. In this paper, we propose a new balanced frequency reuse (BFR) as a new frequency partitioning scheme that gives more power to the users in the outer region and allocates more subcarriers to the users in the inner region. In addition, we propose ordering and directional subcarrier allocation (ODSA) for our frequency partitioning proposal to mitigate the CCI effectively when cells have heterogeneous traffic loads. The performance of the proposed BFR with the ODSA algorithm is investigated via analyses and simulations. Performance evaluation shows that the proposed BFR with the ODSA algorithm can increase both the spectral efficiency and the performance of cell edge users if the transmission power is appropriately handled.

1-20hit(72hit)