The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] surface(404hit)

261-280hit(404hit)

  • A Categorized Row-Column Scanning Computer Interface for the Disabled

    Yu-Luen CHEN  Ying-Ying SHIH  

     
    PAPER-Welfare Engineering

      Vol:
    E84-D No:9
      Page(s):
    1198-1205

    Most of the current research is focused on the row-column scanning keyboard interface for English letter and number input. At the present time, there are insufficient methods to control the computer mouse effectively. In this study, a categorized row-column scanning computer interface is developed to improve the conventional single key-in row-column scanning method. The beneficial developments include: speed enhancement by categorizing radicals of keyboard, input control of mouse, and multiple selection of input methods such as surface electromyographic (SEMG) control, breath pressure sensibility control with puff, force sensibility control, infrared sensibility control and single key-in control. Meanwhile, an enhancement software package is developed to increase the row-column scanning keyboard capabilities and to upgrade the completeness of the computer mouse for the disabled persons to control the operation of data entry and the associated implementation better.

  • Line Integral Representation for Diffracted Fields in Physical Optics Approximation Based on Field Equivalence Principle and Maggi-Rubinowicz Transformation

    Ken-ichi SAKINA  Makoto ANDO  

     
    PAPER-EM Theory

      Vol:
    E84-B No:9
      Page(s):
    2589-2596

    This paper first gives the exact surface integral representation for PO diffracted electromagnetic fields from bounded flat plate through the deformations of the original surface by using field equivalence principle. This exact representation with the surface integral can be approximately reduced to novel line integral along the boundary of the plate by the use of Maggi-Rubinowicz transformation, which keeps a high accuracy even in near zone. Numerical results for the scattering of the electric dipole wave from the square planar plate are presented for demonstrating the accuracy.

  • Wave Scattering from a Periodic Surface with Finite Extent: A Periodic Approach

    Junichi NAKAYAMA  Toyofumi MORIYAMA  Jiro YAMAKITA  

     
    LETTER-Electromagnetic Theory

      Vol:
    E84-C No:8
      Page(s):
    1111-1113

    As a method of analyzing the wave scattering from a finite periodic surface, this paper introduces a periodic approach. The approach first considers the wave diffraction by a periodic surface that is a superposition of surface profiles generated by displacing the finite periodic surface by every integer multiple of the period . It is pointed out that the Floquet solution for such a periodic case becomes an integral representation of the scattered field from the finite periodic surface when the period goes to infinity. A mathematical relation estimating the scattering amplitude for the finite periodic surface from the diffraction amplitude for the periodic surface is proposed. From some numerical examples, it is concluded that the scattering cross section for the finite periodic surface can be well estimated from the diffraction amplitude for a sufficiently large .

  • Wiener-Hopf Analysis of the Diffraction by an Impedance Wedge: The Case of E Polarization

    Michinari SHIMODA  Ryuichi IWAKI  Masazumi MIYOSHI  Toyonori MATSUDA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E84-C No:7
      Page(s):
    994-1001

    The diffraction of a plane electromagnetic wave by an impedance wedge whose boundary is described in terms of the skew coordinate systems is treated by using the Wiener-Hopf technique. The problem is formulated in terms of the simultaneous Wiener-Hopf equations, which are then solved by using a factorization and decomposition procedure and introducing appropriate functions to satisfy the edge condition. The exact solution is expressed through the Maliuzhinets functions. By deforming the integration path of the Fourier inverse transform, which expresses the scattered field, the expressions of the reflected field, diffracted field and the surface wave are obtained. The numerical examples for these fields are given and the characteristics of the surface wave are discussed.

  • High-Performance VCSELs for Optical Data Links

    Rainer MICHALZIK  Karl Joachim EBELING  Max KICHERER  Felix MEDERER  Roger KING  Heiko UNOLD  Roland JAGER  

     
    INVITED PAPER-Optical Active Devices and Modules

      Vol:
    E84-C No:5
      Page(s):
    629-638

    The present paper discusses several promising application areas for optical data links based on high-performance vertical-cavity surface-emitting laser diodes (VCSELs). Both 850 and 980 nm emission wavelength devices realized in the GaAs-AlGaAs or InGaAs-AlGaAs material systems are considered. We show data transmission results of 10 Gb/s signals at 830 nm wavelength over a new high-bandwidth multimode silica fiber of up to 1.6 km length. The same fiber type is employed to demonstrate the first 40 Gb/s transport over 300 m distance by means of a 4-channel coarse wavelength-division multiplexing approach. A first 1 10 linear VCSEL array capable of 10 Gb/s per channel operation is presented for use in next generation parallel optical modules. To improve the singlemode emission characteristics for output power in the 5 mW range we introduce a new device concept incorporating a long monolithic cavity. For low-cost short-distance data links we investigate graded-index polymer optical fibers and report on up to 9 Gb/s transmission over a length of 100 m. Polymer waveguides are also used in an optical layer of a hybrid electrical-optical printed circuit board. Transmitted 10 Gb/s optical data over a prototype board show the potential of this new technology. Finally we present two-dimensional VCSEL arrays for highly parallel data transport on a CMOS chip level. Both 980 and 850 nm bottom emitting devices with modulation capabilities up to 12.5 Gb/s are discussed.

  • High-Performance VCSELs for Optical Data Links

    Rainer MICHALZIK  Karl Joachim EBELING  Max KICHERER  Felix MEDERER  Roger KING  Heiko UNOLD  Roland JAGER  

     
    INVITED PAPER-Optical Active Devices and Modules

      Vol:
    E84-B No:5
      Page(s):
    1255-1264

    The present paper discusses several promising application areas for optical data links based on high-performance vertical-cavity surface-emitting laser diodes (VCSELs). Both 850 and 980 nm emission wavelength devices realized in the GaAs-AlGaAs or InGaAs-AlGaAs material systems are considered. We show data transmission results of 10 Gb/s signals at 830 nm wavelength over a new high-bandwidth multimode silica fiber of up to 1.6 km length. The same fiber type is employed to demonstrate the first 40 Gb/s transport over 300 m distance by means of a 4-channel coarse wavelength-division multiplexing approach. A first 1 10 linear VCSEL array capable of 10 Gb/s per channel operation is presented for use in next generation parallel optical modules. To improve the singlemode emission characteristics for output power in the 5 mW range we introduce a new device concept incorporating a long monolithic cavity. For low-cost short-distance data links we investigate graded-index polymer optical fibers and report on up to 9 Gb/s transmission over a length of 100 m. Polymer waveguides are also used in an optical layer of a hybrid electrical-optical printed circuit board. Transmitted 10 Gb/s optical data over a prototype board show the potential of this new technology. Finally we present two-dimensional VCSEL arrays for highly parallel data transport on a CMOS chip level. Both 980 and 850 nm bottom emitting devices with modulation capabilities up to 12.5 Gb/s are discussed.

  • Ray Tracing Analysis of Large-Scale Random Rough Surface Scattering and Delay Spread

    Kwang-Yeol YOON  Mitsuo TATEIBA  Kazunori UCHIDA  

     
    LETTER-Electromagnetic Theory

      Vol:
    E84-C No:2
      Page(s):
    267-270

    We have discussed a ray tracing method to estimate the scattering characteristics from random rough surface. It has been shown from the traced rays that the diffracted rays dominate over the reflected rays. For the field evaluation, we have used the Fresnel function for the diffracted coefficient and the Fresnel's reflection coefficients. Numerical examples have been carried out for the scattering characteristics of an ocean wave-like rough surface and the delay spared characteristics of a building-like surface. In the present work we have demonstrated that the ray tracing method is effective to numerical analysis of a rough surface scattering.

  • Mathematical Derivation of Modified Edge Representation for Reduction of Surface Radiation Integral

    Ken-ichi SAKINA  Suomin CUI  Makoto ANDO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E84-C No:1
      Page(s):
    74-83

    Modified Edge Representation (MER) empirically proposed by one of the authors is the line integral representation for computing surface radiation integrals of diffraction. It has remarkable accuracy in surface to line integral reduction even for sources very close to the scatterer. It also overcomes false and true singularities in equivalent edge currents. This paper gives the mathematical derivation of MER by using Stokes' theorem; MER is not only asymptotic but also global approximation. It proves remarkable applicability of MER, that is, to smooth curved surface, closely located sources and arbitrary currents which are irrelevant to Maxwell equations.

  • Estimation of Subsurface Fracture Roughness by Polarimetric Borehole Radar

    Motoyuki SATO  Moriyasu TAKESHITA  

     
    PAPER-Inverse Scattering and Image Reconstruction

      Vol:
    E83-C No:12
      Page(s):
    1881-1888

    Borehole radar is known as a powerful technique for monitoring of subsurface structures such as water flow. However, conventional borehole radar systems are operated in the frequency range lower than 100 MHz and the resolution is poor to measure a surface roughness and an inner structure of subsurface fractures directly. In order to monitor the water flow, these characteristics of subsurface fractures are important. We developed a polarimetric borehole radar system using dipole antennas and axial slot antennas and have found that this system can provide more information than conventional borehole radar. However, the relationship between the characteristic of subsurface fracture and the measured polarimetric radar information has not been clear. In this paper, we simulate electromagnetic wave scattering from subsurface fractures having a rough surface by Finite-Difference Time-Domain (FDTD) technique and discuss the relationship between a surface roughness of subsurface fracture and the polarimetric information. It is found that the subsurface fracture having strong cross-polarized components can be estimated to be rough surface fracture. The full polarimetric single-hole radar measurement was carried out at the Mirror Lake site, NH, USA. In this experiment, we found that subsurface fractures can be classified into some groups by an energy scattering matrix, and found that the subsurface fracture estimated to have a rough surface corresponds to that has higher water permeability.

  • Bistatic Radar Moving Returns from Sea Surface

    Ali KHENCHAF  Olivier AIRIAU  

     
    PAPER-Rough Surface Scattering

      Vol:
    E83-C No:12
      Page(s):
    1827-1835

    A program is developed to simulate the signal received by a bistatic pulse radar for a defined scenario. The signal collected at the receiving antenna is calculated as a function of time by taking into account the vectorial aspect of the electromagnetic waves and various elements operating in the radar radiolink. The radar radiolink is designed in a modular structure for a general configuration where the transmitter, the target and the receiver are moving. Modules such as elements characterizing the antennas radiation or defining the target scattering can be inserted in accordance with the desired radar scenario. Then the developed model permits to simulate a wide range of radar scenarios where returns from targets and clutter can be individually processed and their characteristics can be investigated in time or frequency. The interest of this model is great because it permits, for a defined scenario, to generate radar data which can be used in signal processing algorithms for target detection, clutter suppression or target classification. This paper shows the implementation of the simulation program considering a concrete radar scenario. The presented scenario deals with the simulation of the sea clutter occurring in a bistatic radar radiolink over the sea surface. In this application where the sea surface is considered as the target, the electric field scattered from the sea surface is calculated by assuming that the surface is described by two independent scales of roughness.

  • A Study on the Electromagnetic Backscattering from Wind-Roughened Water Surfaces

    Maurizio MIGLIACCIO  Maurizio SARTI  

     
    INVITED PAPER-Rough Surface Scattering

      Vol:
    E83-C No:12
      Page(s):
    1820-1826

    In this paper we report the results of a study regarding the backscattering from wind-roughened water surfaces. The reference profile data has been deducted by an experiment held at the University of Heidelberg circular wave tank facility. The scattering theory is based on a fractal description of the surface and a combined use of the Kirchhoff approximation and the small perturbation method (SPM). The scattering results are tested versus the ones obtained via the periodic-surface moment method. The study shows the reliability of the novel approach.

  • FVTD Simulation for Random Rough Dielectric Surface Scattering at Low Grazing Angle

    Kwang-Yeol YOON  Mitsuo TATEIBA  Kazunori UCHIDA  

     
    PAPER-Rough Surface Scattering

      Vol:
    E83-C No:12
      Page(s):
    1836-1843

    The finite volume time domain (FVTD) method is applied to electromagnetic wave scattering from random rough dielectric surfaces. In order to gain a better understanding of physics of backscattering of microwave from rough surface, this paper treats both horizontal and vertical polarizations especially at low- grazing angle. The results are compared with those obtained by the Integral equation method and the small perturbation method as well as with the experimental data. We have shown that the present method yields a reasonable solution even at LGA. It should be noted that the number of sampling points per wavelength for a rough surface problem should be increased when more accurate numerical results are required, which fact makes the computer simulation impossible at LGA for a stable result. However, when the extrapolation is used for calculating the scattered field, an accurate result can be estimated. If we want to obtain the ratio of backscattering between the horizontal and vertical polarization, we do not need the large number of sampling points.

  • A Method for Linking Process-Level Variability to System Performances

    Tomohiro FUJITA  Hidetoshi ONODERA  

     
    PAPER-Simulation

      Vol:
    E83-A No:12
      Page(s):
    2592-2599

    In this paper we present a case study of a hierarchical statistical analysis. The method which we use here bridges the statistical information between process-level and system-level, and enables us to know the effect of the process variation on the system performance. We use two modeling techniques--intermediate model and response surface model--in order to link the statistical information between adjacent design levels. We show an experiment of the hierarchical statistical analysis applied to a Phase Locked Loop (PLL) circuit, and indicate that the hierarchical statistical analysis is practical with respect to both accuracy and simulation cost. Following three applications are also presented in order to show advantage of this linking method; these are Monte Carlo analysis, worst-case analysis, and sensitive analysis. The results of the Monte Carlo and the worst-case analysis indicate that this method is realistic statistical one. The result of the sensitive analysis enables us to evaluate the effect of process variation at the system level. Also, we can derive constraints on the process variation from a performance requirement.

  • The Phase Shift at Brewster's Angle on a Slightly Rough Surface

    Tetsuya KAWANISHI  

     
    PAPER-Rough Surface Scattering

      Vol:
    E83-C No:12
      Page(s):
    1844-1848

    The mean reflection and transmission coefficients of electromagnetic waves incident onto a two-dimensional slightly random dielectric surface are investigated by means of the stochastic functional approach. We discuss the shift of Brewster's scattering angle using the Wiener kernels and numerical calculations. It is also shown that the phase shift at the reflection into Brewster's angle for a flat surface does not depend on the rms height of the surface, but does on the correlation length of the surface.

  • Numerical Simulation of Electromagnetic Scattering from a Random Rough Surface Cylinder

    Hiromi ARITA  Toshitaka KOJIMA  

     
    LETTER-Rough Surface Scattering

      Vol:
    E83-C No:12
      Page(s):
    1855-1857

    In this paper, the electromagnetic scattering from a cylinder with a computer-generated random rough surface is analyzed by a numerical simulation method. The validity of the proposed numerical method is confirmed by comparing the present numerical results with those calculated by the perturbation method to second order and its Pade approximation. It is shown that the present proposed method can be applied to the case where the surface roughness becomes relatively large.

  • Nonlinear Response of Electromagnetic Surface Waves in a Tangentially Magnetized Ferrite Slab

    Tetsuya UEDA  Makoto TSUTSUMI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E83-C No:10
      Page(s):
    1640-1649

    Nonlinear behavior of electromagnetic surface waves propagating along a tangentially magnetized ferrite slab is investigated. The nonlinear Schrodinger equation (NLSE) which describes the temporal evolution of the electromagnetic wave pulses has been derived directly from the Maxwell equations and the equation of precessional motion for the magnetization in the ferrite slab with the aid of the reductive perturbation method without magnetostatic approximation. Based on the formula derived, we have numerically evaluated the frequency-dependence of the nonlinear coefficient in the NLSE for both a magnetostatic surface wave mode and a dynamic mode. As a result, we have confirmed the possibility of the propagation of solitons in the waveguide.

  • A Novel Subsurface Radar Using a Short Chirp Signal to Expand the Detection Range

    Yoshiyuki TOMIZAWA  Masanobu HIROSE  Ikuo ARAI  Kazuo TANABE  

     
    PAPER-Sensing

      Vol:
    E83-B No:10
      Page(s):
    2427-2434

    The use of a chirp signal is one of the methods to expand the detection range in subsurface radar. However, the presence of time-sidelobes after a conventional pulse-compression makes the detection range degraded because weak signals from underground objects are covered with a large time-sidelobe due to a ground surface reflection. In this paper, we propose a new pulse compression subsurface radar using a short chirp signal in which the echoes from the ground surface and the object are not overlapped. We show that the short chirp signal can improve the detection ability compared with a conventional chirp signal and examine the influence that the decreases of the signal duration and the compression ratio exert on the detection range. By the new pulse compression subsurface radar, the steel pipes buried down to 5 m in depth can be detected.

  • An Influence of Atmospheric Humidity and Temperature on Brush Wear of Sliding Contact

    Takahiro UENO  Koichiro SAWA  

     
    PAPER

      Vol:
    E83-C No:9
      Page(s):
    1395-1401

    At the sliding contact of brush and rotating slip-ring or commutator, it has been recognized that the brush wear is influenced by brush pressure, current density and atmosphere nearby contact part. However, little is known about the relation between brush wear and atmosphere condition in detail. In this paper, the experiments are carried out with a great attention to the effect of surrounding temperature and humidity on brush wear. The sliding part of brush and slip-ring is put on the sealed box and the atmosphere in the sealed box is kept on the specified condition by temperature and humidity control system. The brush wear, contact voltage drop and slip-ring surface morphology are observed after the sliding test. From these results, in both cases of the high humidity (nearby 80%) and low humidity (nearby 20%), the brush wear are large. And the brush wear rate is the lowest around 60% relative humidity. However, the characteristics of brush wear under the 15C is not similar to others. When the surrounding temperature is changed, in case of the 20% humidity, the brush wear increases with increasing surrounding temperature. On the other hand, in case of 80% humidity, the brush wear increases with decreasing surrounding temperature. Consequently, the results clearly shows that the temperature and humidity not only affect the brush wear but also change the condition of the film formation on slip-ring.

  • Onboard Surface Detection Algorithm for TRMM Precipitation Radar

    Toshiaki KOZU  Shinsuke SATOH  Hiroshi HANADO  Takeshi MANABE  Minoru OKUMURA  Ken'ichi OKAMOTO  Toneo KAWANISHI  

     
    PAPER

      Vol:
    E83-B No:9
      Page(s):
    2021-2031

    An algorithm that detects the surface echo peak position in a radar echo range profile has been developed for the TRMM Precipitation Radar (PR). The purpose of the surface echo peak detection is to determine the range window in which "over-sample" data are collected. The surface echo position in the range profile is variable due to the systematic change of satellite geodetic altitude and surface topography. The dynamic control of the over-sample range window using the surface detection algorithm contributes significantly to the reduction of PR data rate that should be sent to the ground station. The algorithm employs an α-β tracking filter and has three functions; surface tracking, lock-off detection and tracking loop initialization. After the launch of the TRMM satellite, a series of initial check-out of the PR was conducted. The performance of the algorithm was evaluated through the initial check-out and two-years operation of the PR. The results indicate that the algorithm is working as expected and basically meets the specification; however, it is found that some functions such as the tracking loop initialization algorithm need to be improved.

  • Pulse Compression Subsurface Radar

    Ikuo ARAI  Yoshiyuki TOMIZAWA  Masanobu HIROSE  

     
    INVITED PAPER

      Vol:
    E83-B No:9
      Page(s):
    1930-1937

    The application of subsurface radar using electromagnetic waves in the VHF band is wide and includes surveying voids under the ground and archaeological prospecting. To achieve a wider application range, the survey depth must be deeper. In this paper, a method of pulse compression using a chirp signal as one of the methods to fulfill this requirement is described, and its advantages and problems are discussed. First, a delay correlation method is proposed as a processing method of pulse compression. It converts RF band chirp signal directly into a pulse. Moreover, the method improves the S/N ratio by over 40 dB compared with conventional pulse radar. Therefore, it has the same detection ability as conventional pulse radar even though it uses less transmitting power. Next, the influences of RF amplifier saturation and underground propagation characteristics on the chirp signal are discussed; both are shown to have little influence on the detection ability of the method.

261-280hit(404hit)