The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] surface(404hit)

121-140hit(404hit)

  • A Fully-Implantable Wireless System for Human Brain-Machine Interfaces Using Brain Surface Electrodes: W-HERBS Open Access

    Masayuki HIRATA  Kojiro MATSUSHITA  Takafumi SUZUKI  Takeshi YOSHIDA  Fumihiro SATO  Shayne MORRIS  Takufumi YANAGISAWA  Tetsu GOTO  Mitsuo KAWATO  Toshiki YOSHIMINE  

     
    INVITED PAPER

      Vol:
    E94-B No:9
      Page(s):
    2448-2453

    The brain-machine interface (BMI) is a new method for man-machine interface, which enables us to control machines and to communicate with others, without input devices but directly using brain signals. Previously, we successfully developed a real time control system for operating a robot arm using brain-machine interfaces based on the brain surface electrodes, with the purpose of restoring motor and communication functions in severely disabled people such as amyotrophic lateral sclerosis patients. A fully-implantable wireless system is indispensable for the clinical application of invasive BMI in order to reduce the risk of infection. This system includes many new technologies such as two 64-channel integrated analog amplifier chips, a Bluetooth wireless data transfer circuit, a wirelessly rechargeable battery, 3 dimensional tissue-fitting high density electrodes, a titanium head casing, and a fluorine polymer body casing. This paper describes key features of the first prototype of the BMI system for clinical application.

  • Asymptotic Calculation of the Received Intensity of Multi-Path Millimeter Waves Transmitted over an Undulating Surface

    Toshio IHARA  Kenji SEKI  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:8
      Page(s):
    2298-2305

    This paper presents the initial results of a study of an asymptotic method for calculating the received intensity of multi-path millimeter waves transmitted over an undulating surface. First, an integral expression of the received intensity is derived using a physical optics approximation. Then its zero-th order asymptotic expression is derived, using the Pearcey integral, for the case where the phase function appearing in the integrand can be approximated by a quartic polynomial. A numerical examination made at 59.5 GHz showed that the asymptotic method is in good agreement with the physical optics method, even in cases where the geometrical optics method deviates significantly from the physical optics method, and that the range of applicability of the asymptotic method has its upper bound somewhere around a transmission distance to surface undulation wavelength ratio of 2.

  • Real-Time Spatial Surface Modeling System Using Wand Traversal Patterns of Grid Edges

    Harksu KIM  Dongtaek KIM  Jaeeung LEE  Youngho CHAI  

     
    PAPER-Human-computer Interaction

      Vol:
    E94-D No:8
      Page(s):
    1620-1627

    This paper presents a grid-based, real-time surface modeling algorithm in which the generation of a precise 3D model is possible by considering the user's intention during the course of the spatial input. In order to create the corresponding model according to the user's input data, plausible candidates of wand traversal patterns of grid edges are defined by considering the sequential and directional characteristics of the wand input. The continuity of the connected polygonal surfaces, including the octree space partitioning, is guaranteed without the extra crack-patching algorithm and the pre-defined patterns. Furthermore, the proposed system was shown to be a suitable and effective surface generation tool for the spatial sketching system. It is not possible to implement the unusual input intention of the 3D spatial sketching system using the conventional Marching Cubes algorithm.

  • A “Group Marching Cube” (GMC) Algorithm for Speeding up the Marching Cube Algorithm

    Lih-Shyang CHEN  Young-Jinn LAY  Je-Bin HUANG  Yan-De CHEN  Ku-Yaw CHANG  Shao-Jer CHEN  

     
    PAPER-Computer Graphics

      Vol:
    E94-D No:6
      Page(s):
    1289-1298

    Although the Marching Cube (MC) algorithm is very popular for displaying images of voxel-based objects, its slow surface extraction process is usually considered to be one of its major disadvantages. It was pointed out that for the original MC algorithm, we can limit vertex calculations to once per vertex to speed up the surface extraction process, however, it did not mention how this process could be done efficiently. Neither was the reuse of these MC vertices looked into seriously in the literature. In this paper, we propose a “Group Marching Cube” (GMC) algorithm, to reduce the time needed for the vertex identification process, which is part of the surface extraction process. Since most of the triangle-vertices of an iso-surface are shared by many MC triangles, the vertex identification process can avoid the duplication of the vertices in the vertex array of the resultant triangle data. The MC algorithm is usually done through a hash table mechanism proposed in the literature and used by many software systems. Our proposed GMC algorithm considers a group of voxels simultaneously for the application of the MC algorithm to explore interesting features of the original MC algorithm that have not been discussed in the literature. Based on our experiments, for an object with more than 1 million vertices, the GMC algorithm is 3 to more than 10 times faster than the algorithm using a hash table. Another significant advantage of GMC is its compatibility with other algorithms that accelerate the MC algorithm. Together, the overall performance of the original MC algorithm is promoted even further.

  • Surface Plasmon Excitation and Emission Light Properties Using Hybrid Setup of Prism and Grating Coupling

    Kazunari SHINBO  Yuta HIRANO  Masayuki SAKAI  Masahiro MINAGAWA  Yasuo OHDAIRA  Akira BABA  Keizo KATO  Futao KANEKO  

     
    BRIEF PAPER

      Vol:
    E94-C No:2
      Page(s):
    196-197

    A half-cylindrical BK-7 prism/dielectric film with a grating/Ag film/fluorescent polymer film structure was prepared, and its surface plasmon (SP) excitation property was investigated. It was confirmed experimentally that SP excitations are possible in this structure by using prism and grating couplings. The SP excitation property depended on the direction of the grating vector. Furthermore, intense photoluminescence was observed when the SPs were simultaneously excited at the Ag/polymer interface by prism coupling and at the Cytop/Ag interface by grating coupling.

  • Reflection, Diffraction and Scattering at Low Grazing Angle of Incidence: Regular and Random Systems Open Access

    Junichi NAKAYAMA  

     
    INVITED PAPER

      Vol:
    E94-C No:1
      Page(s):
    2-9

    When a monochromatic electromagnetic plane wave is incident on an infinitely extending surface with the translation invariance property, a curious phenomenon often takes place at a low grazing angle of incidence, at which the total wave field vanishes and a dark shadow appears. This paper looks for physical and mathematical reasons why such a shadow occurs. Three cases are considered: wave reflection by a flat interface between two media, diffraction by a periodic surface, and scattering from a homogeneous random surface. Then, it is found that, when a translation invariant surface does not support guided waves (eigen functions) propagating with real propagation constants, such the shadow always takes place, because the primary excitation disappears at a low grazing angle of incidence. At the same time, a shadow form of solution is proposed. Further, several open problems are given for future works.

  • A Further Improved Technique on the Stochastic Functional Approach for Randomly Rough Surface Scattering -- Analytical-Numerical Wiener Analysis --

    Yasuhiko TAMURA  

     
    PAPER-Random Media and Rough Surfaces

      Vol:
    E94-C No:1
      Page(s):
    39-46

    This paper proposes a further improved technique on the stochastic functional approach for randomly rough surface scattering. The original improved technique has been established in the previous paper [Waves in Random and Complex Media, vol.19, no.2, pp.181-215, 2009] as a novel numerical-analytical method for a Wiener analysis. By deriving modified hierarchy equations based on the diagonal approximation solution of random wavefields for a TM plane wave incidence or even for a TE plane wave incidence under large roughness, large slope or low grazing incidence, such a further improved technique can provide a large reduction of required computational resources, in comparison with the original improved technique. This paper shows that numerical solutions satisfy the optical theorem with very good accuracy, by using small computational resources.

  • A Reflectance Model for Metallic Paints Using a Two-Layer Structure Surface with Microfacet Distributions

    Gang Yeon KIM  Kwan H. LEE  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E93-D No:11
      Page(s):
    3076-3087

    We present a new method that can represent the reflectance of metallic paints accurately using a two-layer reflectance model with sampled microfacet distribution functions. We model the structure of metallic paints simplified by two layers: a binder surface that follows a microfacet distribution and a sub-layer that also follows a facet distribution. In the sub-layer, the diffuse and the specular reflectance represent color pigments and metallic flakes respectively. We use an iterative method based on the principle of Gauss-Seidel relaxation that stably fits the measured data to our highly non-linear model. We optimize the model by handling the microfacet distribution terms as a piecewise linear non-parametric form in order to increase its degree of freedom. The proposed model is validated by applying it to various metallic paints. The results show that our model has better fitting performance compared to the models used in other studies. Our model provides better accuracy due to the non-parametric terms employed in the model, and also gives efficiency in analyzing the characteristics of metallic paints by the analytical form embedded in the model. The non-parametric terms for the microfacet distribution in our model require densely measured data but not for the entire BRDF(bidirectional reflectance distribution function) domain, so that our method can reduce the burden of data acquisition during measurement. Especially, it becomes efficient for a system that uses a curved-sample based measurement system which allows us to obtain dense data in microfacet domain by a single measurement.

  • Novel Negative Permittivity Structure and Its Application to Excitation of Surface Plasmon in Microwave Frequency Range

    Yujiro KUSHIYAMA  Toru UNO  Takuji ARIMA  

     
    PAPER-Electromagnetic Analysis

      Vol:
    E93-B No:10
      Page(s):
    2629-2635

    This paper proposes a novel metamaterial structure, which equivalently indicates negative permittivity, for the purpose of applying it to a near-field imaging and/or diagnostics of electromagnetic properties by using a surface plasmon in microwave frequency range. The proposed structure consists of a conducting wire lattice with conducting spheres embedded at the mid-point of the wire. It is shown that a spatial dispersion of the wire lattice can be reduced significantly by the sphere. It is also shown that this structure can successfully be applied to an excitation of the surface plasmon in the microwave frequency range by adequately cutting into a thin slab.

  • Bandwidth and Gain Enhancement of Microstrip Patch Antennas Using Reflective Metasurface Open Access

    Sarawuth CHAIMOOL  Kwok L. CHUNG  Prayoot AKKARAEKTHALIN  

     
    INVITED PAPER

      Vol:
    E93-B No:10
      Page(s):
    2496-2503

    Bandwidth and gain enhancement of microstrip patch antennas (MPAs) is proposed using reflective metasurface (RMS) as a superstrate. Two different types of the RMS, namely- the double split-ring resonator (DSR) and double closed-ring resonator (DCR) are separately investigated. The two antenna prototypes were manufactured, measured and compared. The experimental results confirm that the RMS loaded MPAs achieve high-gain as well as bandwidth improvement. The desinged antenna using the RMS as a superstrate has a high-gain of over 9.0 dBi and a wide impedance bandwidth of over 13%. The RMS is also utilized to achieve a thin antenna with a cavity height of 6 mm, which is equivalent to λ/21 at the center frequency of 2.45 GHz. At the same time, the cross polarization level and front-to-back ratio of these antennas are also examined.

  • Simple Analytical Formulas for Estimating IR-Drops in an Early Design Stage

    Kazuyuki OOYA  Yuji TAKASHIMA  Atsushi KUROKAWA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:9
      Page(s):
    1585-1593

    In an early design stage of LSI designing, finding out the proper parameters for power planning is important from the viewpoint of cost minimization. In this paper, we present simple analytical formulas which are used to obtain the initial parameters close to the proper power distribution networks in the early design stage. The formulas for estimating static and pseudo-dynamic voltage drops (IR-drops) are derived by the response surface method (RSM). By making the formulas once, they can be used for the general power planning for the power-grid style in any process technology.

  • 2D Device Simulation of AlGaN/GaN HFET Current Collapse Caused by Surface Negative Charge Injection

    Yusuke IKAWA  Yorihide YUASA  Cheng-Yu HU  Jin-Ping AO  Yasuo OHNO  

     
    PAPER-GaN-based Devices

      Vol:
    E93-C No:8
      Page(s):
    1218-1224

    Drain collapse in AlGaN/GaN HFET is analyzed using a two-dimensional device simulator. Two-step saturation is obtained, assuming hole-trap type surface states on the AlGaN surface and a short negative-charge-injected region at the drain side of the gate. Due to the surface electric potential pinning by the surface traps, the negative charge injected region forms a constant potential like in a metal gate region and it acts as an FET with a virtual gate. The electron concentration profile reveals that the first saturation occurs by pinch-off in the virtual gate region and the second saturation occurs by the pinch-off in the metal gate region. Due to the short-channel effect of the virtual gate FET, the saturation current increases until it finally reaches the saturation current of the intrinsic metal gate FET. Current collapses with current degradation at the knee voltage in the I-V characteristics can be explained by the formation of the virtual gate.

  • Fast Surface Profiling by White-Light Interferometry Using Symmetric Spectral Optical Filter

    Akira HIRABAYASHI  

     
    PAPER-Measurement Technology

      Vol:
    E93-A No:2
      Page(s):
    542-549

    We propose a surface profiling algorithm by white-light interferometry that extends sampling interval to twice of the widest interval among those used in conventional algorithms. The proposed algorithm uses a novel function called an in-phase component of an interferogram to detect the peak of the interferogram, while conventional algorithms used the squared-envelope function or the envelope function. We show that the in-phase component has the same peak as the corresponding interferogram when an optical filter has a symmetric spectral distribution. We further show that the in-phase component can be reconstructed from sampled values of the interferogram using the so-called quadrature sampling technique. Since reconstruction formulas used in the algorithm are very simple, the proposed algorithm requires low computational costs. Simulation results show the effectiveness of the proposed algorithm.

  • TE Plane Wave Scattering and Diffraction from a Periodic Surface with Semi-infinite Extent

    Yasuhiko TAMURA  

     
    PAPER

      Vol:
    E93-C No:1
      Page(s):
    9-16

    This paper studies scattering and diffraction of a TE plane wave from a periodic surface with semi-infinite extent. By use of a combination of the Wiener-Hopf technique and a perturbation method, a concrete representation of the wavefield is explicitly obtained in terms of a sum of two types of Fourier integrals. It is then found that effects of surface roughness mainly appear on the illuminated side, but weakly on the shadow side. Moreover, ripples on the angular distribution of the first-order scattering in the shadow side are newly found as interference between a cylindrical wave radiated from the edge and an inhomogeneous plane wave supported by the periodic surface.

  • On the Estimation of Rough Surface Parameters from Surface Profile Data --- Correlation Length Estimate Using a Surface Slope Function ---

    Masahiko NISHIMOTO  Kohichi OGATA  

     
    BRIEF PAPER

      Vol:
    E93-C No:1
      Page(s):
    89-93

    Gaussian rough surfaces can be characterized by two roughness parameters, the root-mean-square height and correlation length. For accurate estimation of these parameters from measured surface height-profile, data samples with sufficiently long record length are necessary. In this letter, an expression of correlation length in terms of a surface slope function is introduced in order to estimate correlation length and analytical expression of the data record length required for accurate estimation is derived. The result shows that the method using the slope function can reduce the data record length approximately 60% as compared to the commonly employed method using the correlation function. In order to check the result, a Monte Carlo simulation is also carried out and the validity of the result is confirmed.

  • Estimation of Radio Communication Distance along Random Rough Surface

    Junichi HONDA  Kazunori UCHIDA  Kwang-Yeol YOON  

     
    PAPER

      Vol:
    E93-C No:1
      Page(s):
    39-45

    This paper is concerned with the estimation of radio communication distance when both the transmitter and receiver are arbitrarily distributed on a random rough surface such as desert, terrain, sea surface and so on. First, we simulate electromagnetic wave propagation along the rough surface by using the discrete ray tracing method (DRTM) proposed by authors recently. Second, we determine three parameters by conjugate gradient method (CGM) combined with the method of least-squares. Finally, we derive an analytical expression which can estimate the maximum communication distance when the input power of a transmitter and the minimum detectable electric intensity of a receiver are specified. Random rough surfaces are assumed to be Gaussian, pn-th order power law or exponential distributions.

  • Design of Automotive VCSEL Transmitter with On-Chip Feedforward Optical Power Control

    Xin YIN  Johan BAUWELINCK  Tine DE RIDDER  Peter OSSIEUR  Xing-Zhi QIU  Jan VANDEWEGE  Olivier CHASLES  Arnaud DEVOS  Piet DE PAUW  

     
    PAPER-Electronic Circuits

      Vol:
    E92-C No:9
      Page(s):
    1201-1207

    We propose a novel 50 Mb/s optical transmitter fabricated in a 0.6 µm BiCMOS technology for automotive applications. The proposed VCSEL driver chip was designed to operate with a single supply voltage ranging from 3.0 V to 5.25 V. A fully integrated feedforward current control circuit is presented to stabilize the optical output power without any external components. The experimental results show that the optical output power can be stable within a 1.1 dB range and the extinction ratio greater than 14 dB over the automotive environmental temperature range of -40 to 105.

  • High Speed 1.1-µm-Range InGaAs-Based VCSELs Open Access

    Naofumi SUZUKI  Takayoshi ANAN  Hiroshi HATAKEYAMA  Kimiyoshi FUKATSU  Kenichiro YASHIKI  Keiichi TOKUTOME  Takeshi AKAGAWA  Masayoshi TSUJI  

     
    INVITED PAPER

      Vol:
    E92-C No:7
      Page(s):
    942-950

    We have developed InGaAs-based VCSELs operating around 1.1 µm for high-speed optical interconnections. By applying GaAsP barrier layers, temperature characteristics were considerably improved compared to GaAs barrier layers. As a result, 25 Gbps 100 error-free operation was achieved. These devices also exhibited high reliability. No degradation was observed over 3,000 hours under operation temperature of 150 and current density of 19 kA/cm2. We also developed VCSELs with tunnel junctions for higher speed operation. High modulation bandwidth of 24 GHz and a relaxation oscillation frequency of 27 GHz were achieved. 40 Gbps error-free operation was also demonstrated.

  • 10-Gb/s Optical Buffer Memory Using a Polarization Bistable VCSEL

    Takashi MORI  Yuuki SATO  Hitoshi KAWAGUCHI  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E92-C No:7
      Page(s):
    957-963

    Optical buffer memory for 10-Gb/s data signal is demonstrated experimentally using a polarization bistable vertical-cavity surface-emitting laser (VCSEL). The optical buffer memory is based on an optical AND gate function and the polarization bistability of the VCSEL. Fast AND gate operation responsive to 50-ps-width optical pulses is achieved experimentally by increasing the detuning frequency between an injection light into the VCSEL and a lasing light from the VCSEL. A specified bit is extracted from the 10-Gb/s data signal by the fast AND gate operation and is stored as the polarization state of the VCSEL by the polarization bistability. The corresponding numerical simulations are also performed using two-mode rate equations taking into account the detuning frequency. The simulation results confirm the fast AND gate operation by increasing the detuning frequency as well as the experimental results.

  • Degraded Frequency-Tuning Range and Oscillation Amplitude of LC-VCOs due to the Nonquasi-Static Effect in MOS Varactors

    Masataka MIYAKE  Daisuke HORI  Norio SADACHIKA  Uwe FELDMANN  Mitiko MIURA-MATTAUSCH  Hans Jurgen MATTAUSCH  Tatsuya OHGURO  Takahiro IIZUKA  Masahiko TAGUCHI  Shunsuke MIYAMOTO  

     
    PAPER

      Vol:
    E92-C No:6
      Page(s):
    777-784

    Frequency dependent properties of accumulation-mode MOS varactors, which are key elements in many RF circuits, are dominated by Non-Quasi-Static (NQS) effects in the carrier transport. The circuit performances containing MOS varactors can hardly be reproduced without considering the NQS effect in MOS-varactor models. For the LC-VCO circuit as an example it is verified that frequency-tuning range and oscillation amplitude can be overestimated by over 20% and more than a factor 2, respectively, without inclusion of the NQS effect.

121-140hit(404hit)