The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] surface(404hit)

21-40hit(404hit)

  • Stack-Type Enzyme Biofuel Cell Using a Cellulose Nanofiber Sheet to Absorb Lactic Acid from Human Sweat as Fuel

    Satomitsu IMAI  Atsuya YAMAKAWA  

     
    BRIEF PAPER

      Pubricized:
    2022/11/28
      Vol:
    E106-C No:6
      Page(s):
    258-261

    An enzymatic biofuel cell (BFC) that uses lactic acid in human sweat as fuel to generate electricity is an attractive power source for wearable devices. A BFC capable of generating electricity with human sweat has been developed. It comprised a flexible tattoo seal type battery with silver oxide vapor deposited on a flexible material and conductive carbon nanotubes printed on it. The anode and cathode in this battery were arranged in a plane (planar type). This work proposes a thin laminated enzymatic BFC by inserting a cellulose nanofiber (CNF) sheet between two electrodes to absorb human sweat (stack-type). Optimization of the anode and changing the arrangement of electrodes from planar to stack type improved the output and battery life. The stack type is 43.20μW / cm2 at 180mV, which is 1.25 times the maximum power density of the planar type.

  • On Secrecy Performance Analysis for Downlink RIS-Aided NOMA Systems

    Shu XU  Chen LIU  Hong WANG  Mujun QIAN  Jin LI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/11/21
      Vol:
    E106-B No:5
      Page(s):
    402-415

    Reconfigurable intelligent surface (RIS) has the capability of boosting system performance by manipulating the wireless propagation environment. This paper investigates a downlink RIS-aided non-orthogonal multiple access (NOMA) system, where a RIS is deployed to enhance physical-layer security (PLS) in the presence of an eavesdropper. In order to improve the main link's security, the RIS is deployed between the source and the users, in which a reflecting element separation scheme is developed to aid data transmission of both the cell-center and the cell-edge users. Additionally, the closed-form expressions of secrecy outage probability (SOP) are derived for the proposed RIS-aided NOMA scheme. To obtain more deep insights on the derived results, the asymptotic performance of the derived SOP is analyzed. Moreover, the secrecy diversity order is derived according to the asymptotic approximation in the high signal-to-noise ratio (SNR) and main-to-eavesdropper ratio (MER) regime. Furthermore, based on the derived results, the power allocation coefficient and number of elements are optimized to minimize the system SOP. Simulations demonstrate that the theoretical results match well with the simulation results and the SOP of the proposed scheme is clearly less than that of the conventional orthogonal multiple access (OMA) scheme obviously.

  • Dual Bands and Dual Polarization Reflectarray for Millimeter Wave Application by Supercell Structure

    Hiroshi HASHIGUCHI  Takumi NISHIME  Naobumi MICHISHITA  Hisashi MORISHITA  Hiromi MATSUNO  Takuya OHTO  Masayuki NAKANO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/09/12
      Vol:
    E106-B No:3
      Page(s):
    241-249

    This paper presents dual bands and dual polarization reflectarrays for 5G millimeter wave applications. The frequency bands of 28GHz and 39GHz are allocated for 5G to realize high speed data transmission. However, these high frequency bands create coverage holes in which no link between base station and receivers is possible. Reflectarray has gained attention for reducing the size and number of coverage holes. This paper proposes a unit cell with swastika and the patch structure to construct the dual bands reflectrray operating at 28GHz and 39GHz by supercell. This paper also presents the detailed design procedure of the dual-bands reflectarray by supercell. The reflectarray is experimentally validated by a bistatic radar cross section measurement system. The experimental results are compared with simulation and reflection angle agreement is observed.

  • Intelligent Reconfigurable Surface-Aided Space-Time Line Code for 6G IoT Systems: A Low-Complexity Approach

    Donghyun KIM  Bang Chul JUNG  

     
    LETTER-Information Theory

      Pubricized:
    2022/08/10
      Vol:
    E106-A No:2
      Page(s):
    154-158

    Intelligent reconfigurable surfaces (IRS) have attracted much attention from both industry and academia due to their performance improving capability and low complexity for 6G wireless communication systems. In this letter, we introduce an IRS-assisted space-time line code (STLC) technique. The STLC was introduced as a promising technique to acquire the optimal diversity gain in 1×2 single-input multiple-output (SIMO) channel without channel state information at receiver (CSIR). Using the cosine similarity theorem, we propose a novel phase-steering technique for the proposed IRS-assisted STLC technique. We also mathematically characterize the proposed IRS-assisted STLC technique in terms of outage probability and bit-error rate (BER). Based on computer simulations, it is shown that the results of analysis shows well match with the computer simulation results for various communication scenarios.

  • MSFF: A Multi-Scale Feature Fusion Network for Surface Defect Detection of Aluminum Profiles

    Lianshan SUN  Jingxue WEI  Hanchao DU  Yongbin ZHANG  Lifeng HE  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2022/05/30
      Vol:
    E105-D No:9
      Page(s):
    1652-1655

    This paper presents an improved YOLOv3 network, named MSFF-YOLOv3, for precisely detecting variable surface defects of aluminum profiles in practice. First, we introduce a larger prediction scale to provide detailed information for small defect detection; second, we design an efficient attention-guided block to extract more features of defects with less overhead; third, we design a bottom-up pyramid and integrate it with the existing feature pyramid network to construct a twin-tower structure to improve the circulation and fusion of features of different layers. In addition, we employ the K-median algorithm for anchor clustering to speed up the network reasoning. Experimental results showed that the mean average precision of the proposed network MSFF-YOLOv3 is higher than all conventional networks for surface defect detection of aluminum profiles. Moreover, the number of frames processed per second for our proposed MSFF-YOLOv3 could meet real-time requirements.

  • Obstacle Detection for Unmanned Surface Vehicles by Fusion Refinement Network

    Weina ZHOU  Xinxin HUANG  Xiaoyang ZENG  

     
    PAPER-Information Network

      Pubricized:
    2022/05/12
      Vol:
    E105-D No:8
      Page(s):
    1393-1400

    As a kind of marine vehicles, Unmanned Surface Vehicles (USV) are widely used in military and civilian fields because of their low cost, good concealment, strong mobility and high speed. High-precision detection of obstacles plays an important role in USV autonomous navigation, which ensures its subsequent path planning. In order to further improve obstacle detection performance, we propose an encoder-decoder architecture named Fusion Refinement Network (FRN). The encoder part with a deeper network structure enables it to extract more rich visual features. In particular, a dilated convolution layer is used in the encoder for obtaining a large range of obstacle features in complex marine environment. The decoder part achieves the multiple path feature fusion. Attention Refinement Modules (ARM) are added to optimize features, and a learnable fusion algorithm called Feature Fusion Module (FFM) is used to fuse visual information. Experimental validation results on three different datasets with real marine images show that FRN is superior to state-of-the-art semantic segmentation networks in performance evaluation. And the MIoU and MPA of the FRN can peak at 97.01% and 98.37% respectively. Moreover, FRN could maintain a high accuracy with only 27.67M parameters, which is much smaller than the latest obstacle detection network (WaSR) for USV.

  • Analysis of an InSb Sphere Array on a Dielectric Substrate in the THz Regime

    Jun SHIBAYAMA  Takuma KURODA  Junji YAMAUCHI  Hisamatsu NAKANO  

     
    BRIEF PAPER

      Pubricized:
    2021/09/03
      Vol:
    E105-C No:4
      Page(s):
    159-162

    A periodic array of InSb spheres on a substrate is numerically analyzed at terahertz frequencies. The incident field is shown to be coupled to the substrate due to the guided-mode resonance. The effect of the background refractive index on the transmission characteristics is investigated for sensor applications.

  • Sea Clutter Image Segmentation Method of High Frequency Surface Wave Radar Based on the Improved Deeplab Network

    Haotian CHEN  Sukhoon LEE  Di YAO  Dongwon JEONG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2021/10/12
      Vol:
    E105-A No:4
      Page(s):
    730-733

    High Frequency Surface Wave Radar (HFSWR) can achieve over-the-horizon detection, which can effectively detect and track the ships and ultra-low altitude aircrafts, as well as the acquisition of sea state information such as icebergs and ocean currents and so on. However, HFSWR is seriously affected by the clutters, especially sea clutter and ionospheric clutter. In this paper, we propose a deep learning image semantic segmentation method based on optimized Deeplabv3+ network to achieve the automatic detection of sea clutter and ionospheric clutter using the measured R-D spectrum images of HFSWR during the typhoon as experimental data, which avoids the disadvantage of traditional detection methods that require a large amount of a priori knowledge and provides a basis for subsequent the clutter suppression or the clutter characteristics research.

  • Scaling Law of Energy Efficiency in Intelligent Reflecting Surface Enabled Internet of Things Networks

    Juan ZHAO  Wei-Ping ZHU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/09/29
      Vol:
    E105-A No:4
      Page(s):
    739-742

    The energy efficiency of intelligent reflecting surface (IRS) enabled internet of things (IoT) networks is studied in this letter. The energy efficiency is mathematically expressed, respectively, as the number of reflecting elements and the spectral efficiency of the network and is shown to scale in the logarithm of the reflecting elements number in the high regime of transmit power from source node. Furthermore, it is revealed that the energy efficiency scales linearly over the spectral efficiency in the high regime of transmit power, in contrast to conventional studies on energy and spectral efficiency trade-offs in the non-IRS wireless IoT networks. Numerical simulations are carried out to verify the derived results for the IRS enabled IoT networks.

  • Mantle-Cloak Antenna by Controlling Surface Reactance of Dielectric-Loaded Dipole Antenna

    Thanh Binh NGUYEN  Naobumi MICHISHITA  Hisashi MORISHITA  Teruki MIYAZAKI  Masato TADOKORO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/09/24
      Vol:
    E105-B No:3
      Page(s):
    275-284

    We developed a mantle-cloak antenna by controlling the surface reactance of a dielectric-loaded dipole antenna. First, a mantle-cloak antenna with an assumed ideal metasurface sheet was designed, and band rejection characteristics were obtained by controlling the surface reactance of the mantle cloak. The variable range of the frequency spacing between the operating and stopband frequencies of the antenna was clarified by changing the value of the surface reactance. Next, a mantle-cloak antenna that uses vertical strip conductors was designed to clarify the characteristics and operating principle of the antenna. It was confirmed that the stopband frequency was 1130MHz, and the proposed antenna had a 36.3% bandwidth (|S11| ≤ -10dB) from 700 to 1010MHz. By comparing the |S11| characteristics and the input impedance characteristics of the proposed antenna with those of the dielectric-loaded antenna, the effect of the mantle cloak was confirmed. Finally, a prototype of the mantle-cloak antenna that uses vertical strip conductors was developed and measured to validate the simulation results. The measurement results were consistent with the simulation results.

  • Gravity Wave Observation Experiment Based on High Frequency Surface Wave Radar

    Zhe LYU  Changjun YU  Di YAO  Aijun LIU  Xuguang YANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2021/04/05
      Vol:
    E104-A No:10
      Page(s):
    1416-1420

    Observations of gravity waves based on High Frequency Surface Wave Radar can make contributions to a better understanding of the energy transfer process between the ocean and the ionosphere. In this paper, through processing the observed data of the ionospheric clutter from HFSWR during the period of the Typhoon Rumbia with short-time Fourier transform method, HFSWR was proven to have the capability of gravity wave detection.

  • Low Profile High-Efficiency Transmitarray Antenna Based on Hybrid Frequency Selective Surface

    Chang-Hyun LEE  Jeong-Hae LEE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/07/17
      Vol:
    E104-B No:1
      Page(s):
    49-54

    This paper presents a low profile high-efficiency transmitarray (TA) antenna based on a hybrid frequency selective surface (FSS). The hybrid FSS consists of two types of unit cells that have different incident angles and TE/TM polarization. This design minimizes the performance degradation caused by the oblique incident angle when designing a low profile TA antenna. In addition, the set of transmission phases to minimize transmission loss is selected by employing the optimal output phase reference. To verify its feasibility, a low profile TA (focal length/diameter of FSS =0.24) antenna that employs a unit patch antenna with a low gain and wide beamwidth as a feed antenna without an additional structure is designed. The simulated and measured results are in good agreement. In particular, the high simulated and measured aperture efficiencies of 42.7% and 41.9%, respectively, are obtained at 10GHz, respectively.

  • Efficient Conformal Retrodirective Metagrating Operating Simultaneously at Multiple Azimuthal Angles

    The Viet HOANG  Jeong-Hae LEE  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    73-79

    This paper presents a conformal retrodirective metagrating with multi-azimuthal-angle operating ability. First, a flat metagrating composed of a periodic array of single rectangular patch elements, two-layer stacked substrates, and a ground plane is implemented to achieve one-directional retroreflection at a specific angle. The elevation angle of the retroreflection is manipulated by precisely tuning the value of the period. To control the energy coupling to the retrodirective mode, the dimensions of the length and width of the rectangular patch are investigated under the effect of changing the substrate thickness. Three values of the length, width, and thickness are then chosen to obtain a high retroreflection power efficiency. Next, to create a conformal design operating simultaneously at multiple azimuthal angles, the rectangular patch array using a flexible ultra-thin guiding layer is conformed to a dielectric cylindrical substrate backed by a perfect electric conductor ground plane. Furthermore, to further optimize the retroreflection efficiency, two circular metallic plates are added at the two ends of the cylindrical substrate to eliminate the specular reflection inside the space of the cylinder. The measured radar cross-section shows a power efficiency of the retrodirective metagrating of approximately 91% and 93% for 30° retrodirected elevation angle at the azimuthal angles of 0° and 90°, respectively, at 5.8GHz.

  • Fundamental Investigation of a Grating Consisting of InSb-Coated Dielectric Cylinders on a Substrate in the THz Regime

    Jun SHIBAYAMA  Sumire TAKAHASHI  Junji YAMAUCHI  Hisamatsu NAKANO  

     
    PAPER

      Pubricized:
    2020/03/24
      Vol:
    E103-C No:11
      Page(s):
    567-574

    A grating consisting of a periodic array of InSb-coated dielectric cylinders on a substrate is analyzed at THz frequencies using the frequency-dependent finite-difference time-domain method based on the trapezoidal recursive convolution technique. The transmission characteristics of an infinite periodic array are investigated not only at normal incidence but also at oblique incidence. The incident field is shown to be coupled to the substrate due to the guided-mode resonance (GMR), indicating the practical application of a grating coupler. For the sensor application, the frequency shift of the transmission dip is investigated with attention to the variation of the background refractive index. It is found that the shift of the dip involving the surface plasmon resonance is almost ten times as large as that of the dip only from the GMR. We finally analyze a finite periodic array of the cylinders. The field radiation from the array is discussed, when the field propagates through the substrate. It is shown that the radiation direction can be controlled with the frequency of the propagating field.

  • Surface Mount Technology for Silica-Based Planar Lightwave Circuit and Its Application to Compact 16×16 Multicast Switch

    Ai YANAGIHARA  Keita YAMAGUCHI  Takashi GOH  Kenya SUZUKI  

     
    PAPER

      Pubricized:
    2020/06/05
      Vol:
    E103-C No:11
      Page(s):
    679-684

    We demonstrated a compact 16×16 multicast switch (MCS) made from a silica-based planar lightwave circuit (PLC). The switch utilizes a new electrical connection method based on surface mount technology (SMT). Five electrical connectors are soldered directly to the PLC by using the standard reflow process used for electrical devices. We reduced the chip size to half of one made with conventional wire bonding technology. We obtained satisfactory solder contacts and excellent switching properties. These results indicate that the proposed method is suitable for large-scale optical switches including MCSs, variable optical attenuators, dispersion compensators, and so on.

  • A Field Equivalence between Physical Optics and GO-Based Equivalent Current Methods for Scattering from Circular Conducting Cylinders

    Ngoc Quang TA  Hiroshi SHIRAI  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2020/04/08
      Vol:
    E103-C No:9
      Page(s):
    382-387

    Plane wave scattering from a circular conducting cylinder and a circular conducting strip has been formulated by equivalent surface currents which are postulated from the scattering geometrical optics (GO) field. Thus derived radiation far fields are found to be the same as those formulated by a conventional physical optics (PO) approximation for both E and H polarizations.

  • Dual-Polarized Metasurface Using Multi-Layer Ceramic Capacitors for Radar Cross Section Reduction

    Thanh-Binh NGUYEN  Naoyuki KINAI  Naobumi MICHISHITA  Hisashi MORISHITA  Teruki MIYAZAKI  Masato TADOKORO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2020/02/18
      Vol:
    E103-B No:8
      Page(s):
    852-859

    This paper proposes a dual-polarized metasurface that utilizes multi-layer ceramic capacitors (MLCCs) for radar cross-section (RCS) reduction in the 28GHz band of the quasi-millimeter band. MLCCs are very small in size; therefore, miniaturization of the unit cell structure of the metamaterial can be expected, and the MLCCs can be periodically loaded onto a narrow object. First, the MLCC structure was modeled as a basic structure, and the effective permeability of the MLCC was determined to investigate the influence of the arrangement direction on MLCC interaction. Next, the unit cell structure of the dual-polarized metasurface was designed for an MLCC set on a dielectric substrate. By analyzing the infinite periodic structure and finite structure, the monostatic reduction characteristics, oblique incidence characteristics, and dual-polarization characteristics of the proposed metasurface were evaluated. In the case of the MLCCs arranged in the same direction, the monostatic RCS reduction was approximately 30dB at 29.8GHz, and decreased when the MLCCs were arranged in a checkerboard pattern. The monostatic RCS reductions for the 5 × 5, 10 × 10, and 20 × 20 divisions were roughly the same, i.e., 10.8, 9.9, and 10.3dB, respectively. Additionally, to validate the simulated results, the proposed dual-polarized metasurface was fabricated and measured. The measured results were found to approximately agree with the simulated results, confirming that the RCS can be reduced for dual-polarization operation.

  • Range Points Migration Based Spectroscopic Imaging Algorithm for Wide-Beam Terahertz Subsurface Sensor Open Access

    Takamaru MATSUI  Shouhei KIDERA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2019/09/25
      Vol:
    E103-C No:3
      Page(s):
    127-130

    Here, we present a novel spectroscopic imaging method based on the boundary-extraction scheme for wide-beam terahertz (THz) three-dimensional imaging. Optical-lens-focusing systems for THz subsurface imaging generally require the depth of the object from the surface to be input beforehand to achieve the desired azimuth resolution. This limitation can be alleviated by incorporating a wide-beam THz transmitter into the synthetic aperture to automatically change the focusing depth in the post-signal processing. The range point migration (RPM) method has been demonstrated to have significant advantages in terms of imaging accuracy over the synthetic-aperture method. Moreover, in the RPM scheme, spectroscopic information can be easily associated with each scattering center. Thus, we propose an RPM-based terahertz spectroscopic imaging method. The finite-difference time-domain-based numerical analysis shows that the proposed algorithm provides accurate target boundary imaging associated with each frequency-dependent characteristic.

  • Wireless Power Transfer in the Radiative Near-Field Using a Novel Reconfigurable Holographic Metasurface Aperture Open Access

    Wenyu LUO  

     
    LETTER-Power Transmission

      Vol:
    E102-A No:12
      Page(s):
    1928-1931

    In this letter, we propose a novel wireless power transfer (WPT) scheme in the radiative near-field (Fresnel) region, which based on machine vision and dynamically reconfigurable holographic metasurface aperture capable of focusing power to multiple spots simultaneously without any information feedback. The states of metamaterial elements, formed by tunable meander line resonators, is determined using holographic design principles, in which the interference pattern of reference mode and the desired radiated field pattern leads to the required phase distribution over the surface of the aperture. The three-dimensional position information of mobile point sources is determined by machine visual localization, which can be used to obtain the aperture field. In contrast to the existing research studies, the proposed scheme is not only designed to achieve free multi-focuses, but also with machine vision, low-dimensionality, high transmission efficiency, real-time continuous reconfigurability and so on. The accuracy of the analysis is confirmed using numerical simulation.

  • Emergence of an Onion-Like Network in Surface Growth and Its Strong Robustness

    Yukio HAYASHI  Yuki TANAKA  

     
    LETTER-Graphs and Networks

      Vol:
    E102-A No:10
      Page(s):
    1393-1396

    We numerically investigate that optimal robust onion-like networks can emerge even with the constraint of surface growth in supposing a spatially embedded transportation or communication system. To be onion-like, moderately long links are necessary in the attachment through intermediations inspired from a social organization theory.

21-40hit(404hit)